""AERO" Sp. z o. o. 03-942 WARSAW, POLAND UL. WAŁ MIEDZESZYŃSKI 844

for the AT-3R100 VERY LIGHT AEROPLANE

	ident of the CAO
CIVIL AVI	ATION OFFICE
Approved:	
Registered under No:	
Aeroplane Serial No.:	
Aeroplane registration (Call sign):	

(Originally signed for President of the CAO by Mr. Z. Mazan) $\,$

Date: 2004-09-23

This aeroplane must be operated in accordance with information and limitations contained in this Manual.

This Manual must be carried in the aeroplane at all times

Doc. No. ATL3.04

"AERO"	Sp.	Z	0.0.
AT-3 R10	00		

Editor:

"AERO" Sp. z o.o.
O3-942 WARSAW, POLAND
UL. WAŁ MIEDZESZYŃSKI 844

Approval of translation has been done to the best knowledge and judgment. In any case, the original Polish language version is authoritive.

English language version of the Polish Document No. ATL3.03 AFM, translated under delegation of authority CAIB No. 54C.

Jan A.Jasiński, B.S.(Eng.)

CONTENTS

	SECTION
GENERAL	1
LIMITATIONS	2
EMERGENCY PROCEDURES	3
NORMAL PROCEDURES	4
PERFORMANCE	5
WEIGHT AND BALANCE	6
DESCRIPTION OF THE AEROPLANE AND ITS EQUIP	MENT 7
SERVICING	8
SUPPLEMENTS	9

RECORDING OF REVISIONS

All revisions to this manual, with the exception of actual changes of weighing data must be recorded in the table below.

The new or corrected text in the corrected pages, is to be marked at the margin with a vertical line and the number of the revision and the date of the revision is to be printed at the bottom of the page. For each revision, the pages specified in the Log of Revisions must be replaced.

NOTE

For aeroplane use with a maximum takeoff and landing weight 630 kg Sections 1 to 9 of this manual are fully replaced by Supplement No. 76 "MAXIMUM TAKEOFF AND LANDING WEIGHT 630 KG".

List of Effective Pages

Section	Page	Date of issue
0	0-1	SEPTEMBER, 2004
0	0-2	SEPTEMBER, 2004
0	0-3	SEPTEMBER, 2004
0	0-4	OCTOBER, 2018
0	0-5	MARCH, 2020
0	0-6	NOVEMBER, 2012
0	0-7	NOVEMBER, 2018
0	0-8	JULY, 2010
0	0-9	NOVEMBER, 2018
0	0-10	JANUARY, 2012
0	0-11	MARCH, 2020
0	0-12	NOVEMBER, 2012
1	1-1	SEPTEMBER, 2004
1	1-2	JANUARY, 2012
1	1-3	AUGUST, 2008
1	1-4	SEPTEMBER, 2004
1	1-5	MARCH, 2020
1	1-6	SEPTEMBER, 2004
1	1-7	SEPTEMBER, 2004
1	1-8	SEPTEMBER, 2004
1	1-9	SEPTEMBER, 2004
1	1-10	SEPTEMBER, 2004
1	1-11	SEPTEMBER, 2004
1	1-12	SEPTEMBER, 2004
2	Appvd. 2-1	SEPTEMBER, 2004
2	Appvd. 2-2	SEPTEMBER, 2004
2	Appvd. 2-3	SEPTEMBER, 2004
2	Appvd. 2-4	OCTOBER, 2017
2	Appvd. 2-5	MARCH, 2020
2	Appvd. 2-6	OCTOBER, 2017
2	Appvd. 2-7	SEPTEMBER, 2004
2	Appvd. 2-8	JULY, 2010
2	Appvd. 2-9	SEPTEMBER, 2004
2	Appvd. 2-10	SEPTEMBER, 2004
2	Appvd. 2-11	MARCH, 2011

Section	Page	Date of issue
2	Appvd. 2-12	NOVEMBER, 2012
2	Appvd. 2-13	AUGUST, 2008
2	Appvd. 2-14	NOVEMBER, 2012
3	Appvd. 3-1	SEPTEMBER, 2004
3	Appvd. 3-2	OCTOBER, 2009
3	Appvd. 3-3	SEPTEMBER, 2004
3	Appvd. 3-4	SEPTEMBER, 2004
3	Appvd. 3-5	SEPTEMBER, 2004
3	Appvd. 3-6	SEPTEMBER, 2004
3	Appvd. 3-7	SEPTEMBER, 2004
3	Appvd. 3-8	SEPTEMBER, 2004
4	Appvd. 4-1	SEPTEMBER, 2004
4	Appvd. 4-2	SEPTEMBER, 2004
4	Appvd. 4-3	SEPTEMBER, 2004
4	Appvd. 4-4	SEPTEMBER, 2004
4	Appvd. 4-5	JULY, 2010
4	Appvd. 4-6	JULY, 2010
4	Appvd. 4-7	JULY, 2010
4	Appvd. 4-8	JULY, 2010
4	Appvd. 4-9	JULY, 2010
4	Appvd. 4-10	JULY, 2010
4	Appvd. 4-11	OCTOBER, 2009
4	Appvd. 4-12	JULY, 2010
4	Appvd. 4-13	OCTOBER, 2009
4	Appvd. 4-14	OCTOBER, 2009
4	Appvd. 4-15	JULY, 2010
4	Appvd. 4-16	SEPTEMBER, 2004
4	Appvd 4-17	SEPTEMBER, 2004
4	Appvd 4 18	SEPTEMBER, 2004
5	Appvd 5-1	MARCH, 2011
5	Appvd 5-2	SEPTEMBER, 2004
5	Appvd 5-3	SEPTEMBER, 2004
5	Appvd 5-4	SEPTEMBER, 2004
5	Appvd 5-5	SEPTEMBER, 2004
5	Appvd 5-6	SEPTEMBER, 2004

Section	Page	Date of issue
5	Appvd 5-7	SEPTEMBER, 2004
5	Appvd 5-8	SEPTEMBER, 2004
5	Appvd 5-9	SEPTEMBER, 2004
5	Appvd 5-10	SEPTEMBER, 2004
5	5-11	NOVEMBER, 2012
5	5-12	NOVEMBER, 2012
5	5-13	MARCH, 2011
5	5-14	SEPTEMBER, 2004
5	5-15	SEPTEMBER, 2004
5	5-16	SEPTEMBER, 2004
6	6-1	SEPTEMBER, 2004
6	6-2	SEPTEMBER, 2004
6	6-3	JULY, 2010
6	6-4	SEPTEMBER, 2004
6	6-5	SEPTEMBER, 2004
6	6-6	JULY, 2010
6	6-7	JULY, 2010
6	6-8	JULY, 2010
6	6-9	SEPTEMBER, 2004
6	6-10	MARCH, 2006
6	6-11	NOVEMBER, 2018
6	6-12	NOVEMBER, 2012
6	6-13	NOVEMBER, 2018
6	6-14	DECEMBER, 2015
7	7-1	JULY, 2010
7	7-2	SEPTEMBER, 2004
7	7-3	SEPTEMBER, 2004
7	7-4	SEPTEMBER, 2004
7	7-5	SEPTEMBER, 2004
7	7-6	SEPTEMBER, 2004
7	7-7	NOVEMBER, 2012
7	7-8	SEPTEMBER, 2004
7	7-9	SEPTEMBER, 2004
7	7-10	SEPTEMBER, 2004
7	7-11	SEPTEMBER, 2004

Section	Page	Date of issue
7	7-12	SEPTEMBER, 2004
7	7-13	SEPTEMBER, 2004
7	7-14	SEPTEMBER, 2004
7	7-15	JULY, 2010
7	7-16	JULY, 2010
7	7-17	JULY, 2010
7	7-18	JULY, 2010
7	7-19	JULY, 2010
7	7-20	JULY, 2010
7	7-21	JULY, 2010
7	7-22	JULY, 2010
7	7-23	JULY, 2010
7	7-24	JULY, 2010
7	7-25	JULY, 2010
7	7-26	JULY, 2010
7	7-27	JULY, 2010
7	7-28	JULY, 2010
7	7-29	JULY, 2010
7	7-30	JULY, 2010
7	7-31	JULY, 2010
7	7-32	JULY, 2010
8	8-1	JULY, 2010
8	8-2	SEPTEMBER, 2004
8	8-3	SEPTEMBER, 2004
8	8-4	JULY, 2010
8	8-5	JULY, 2010
8	8-6	JULY, 2010
8	8-7	JULY, 2010
8	8-8	JULY, 2010
8	8-9	JULY, 2010
8	8-10	JULY, 2010
8	8-11	JULY, 2010
8	8-12	JULY, 2010
9	9-1	SEPTEMBER, 2004

Section	Page	Date of issue
9	9-2	SEPTEMBER, 2004
9	9-3	AUGUST, 2008
9	9-4	JULY, 2009
9	9-5	OCTOBER, 2017
9	9-6	OCTOBER, 2017
9	9-7	SEPTEMBER, 2017
9	9-8	OCTOBER, 2018
9	9-9	NOVEMBER, 2018
9	9-10	MARCH, 2018

LOG OF REVISIONS

No. of Revision	Description of Revision	Revised Pages	Date
1)	Introduction of the Supplement No. 21	0-5, 0-7 to 0-9, 6-11, 9-4	30.06.2005
2	Introduction of the Supplements No. 22 to 25	0-5, 0-7 to 0-9, 6-11, 9-4	15.07.2005
3	Introduction of the Supplement No. 26	0-5, 0-7 to 0-9, 6-11, 9-4	10.01.2006
4	Introduction of the Supplement No. 27,	0-5, 0-7 to 0-9, 6,10, 6-11, 9-4, 9.26-1, 9.26-3, 9.26-5	20.03.2006
(5)	Introduction of the Supplement No. 28,	0-5, 0-7 to 0-9, 6-11, 9-4	19.03.2007
6	Introduction of the Supplement No. 29, removed of the Supplement No. 17, and text modifications	0-4 to 0-9, 1-3, 2-5, 2-6, 2-13, 2-14, 4-6, 4-8 to 4-12, 4-15, 6-11, 6-12, 7-15 to 7-30, 9-3, 9-4	29.08.2008
7	Introduction of the Supplement No. 30, changed pages 9.26-3÷9 in Supplement 26	0-5, 0-7 to 0-9, 6-12, 9-4	10.07.2009
8	Introduction of the Supplement No. 31, 32, 33 and text modifications	0-5 to 0-9, 3-2, 4-5 to 4-7, 4-9 do 4-11, 4-13, 4-14, 6-12, 9-5, 9-6	02.10.2009
9	Changes to parking brake system. Tow bar. Extending area of acceptable movement of center of gravity. Changed pages 9.31-7, 9.31-8, 9.31-12 to 9.31-16 in Supplement 31	0-5 to 0-10, 2-8, 4-5 to 4-10, 4-12, 4-15, 6-3, 6-6 to 6-8, 6-11, 7-1, 7-15 to 7-32, 8-1, 8-4 to 8-12	12.07.2010
100	Introduction of the Supplement No. 34 to 45	0-5, 0-7, 0-9, 0-10 6-12, 9-5, 9-6	15.10.2010
(1)	Changing the amount of consumable fuel. Introduction of the Supplements No. 46 to 50 Changed pages 9.21-9, 9.21-10 in Supplement No. 21	0-5 do 0-7, 0-9, 0-10, 2-11 2-12, 2-14, 5-1, 5-11 do 5-13, 6-12, 9-6	07.03.2011
12	Introduction of the Supplement No. 51	0-5, 0-7, 0-9, 0-10 6-12, 9-6	20.06.2011
(3)	Introduction of the Supplement No. 52	0-5, 0-7, 0-9, 0-10 1-2, 6-12, 9-6	12.01.2012

"AERO" Sp. z o.o. AT-3 R100

GENERAL INFORMATION

No. of Revision	Description of Revision	Revised Pages	Date
(4)	Changing the amount of consumable fuel. Introduction of the Supplements No. 53 to 55 Changed pages 9.21-9, 9.21-10 in Supplement No. 21	0-5 do 0-7, 0-9, 0-11, 0-12, 2-12, 2-14, 5-11, 5-12, 6-12, 7-7, 9-7, 9-8	22.11.2012
(5)	Introduction of the Supplements No. 56 to 57	0-5, 0-7, 0-9, 0-11 6-13, 6-14, 9-7	30.12.2015
6	Introduction of the Supplements No. 58 to 60	0-5, 0-7, 0-9, 0-11 6-13, 9-7	01.04.2016
Ø	Introduction of the Supplement No. 61	0-5, 0-7, 0-9, 0-11 6-13, 9-7	20.06.2017
8	Introduction of the Supplements No. 62 to 64	0-5, 0-7, 0-9, 0-11 6-11, 6-13, 9-7, 9-8	28.09.2017
®	Introduction of the Supplements No. 65 to 67. Text modifications. Changed pages 9.31-2 to 9.31-26 in Supplement No. 31. Changed pages 9.45-32 to 9.45-40 in Supplement No. 45.	0-5, 0-7, 0-9, 0-11 2-4, 2-6, 6-13, 9-5 9-6, 9-8	25.10.2017
@	Introduction of the Supplements No. 68 to 74	0-5, 0-7, 0-9, 0-11 6-13, 9-8	21.11.2017
2)	Introduction of the Supplement No. 75	0-5, 0-7, 0-9, 0-11 6-13, 9-9, 9-10	26.03.2018
22	Introduction of the Supplements No. 65A and 76	0-4, 0-5, 0-9, 0-11 9-8, 9-9	15.10.2018
3	Introduction of the Supplement No. 77 Changed pages 0-2, 0-5, 0-7, 6-11, 6-13 and 9-9 in Supplement No. 76	0-5, 0-7, 0-9, 0-11 6-11, 6-13, 9-9	26.11.2018
29	Errors have been corrected. Changed pages 0-2, 0-3, 0-4 2-5, 5-6 in Supplement No. 76	0-5, 0-11, 1-5, 2-5	04.03.2020

"AERO" Sp. z o.o. AT-3 R100

GENERAL INFORMATION

PAGE INTENTIONALLY LEFT BLANK

Section 1

GENERAL

		Page
1.1	Introduction	1-2
1.2	Basis of certification	1-3
1.3	Warnings, cautions and remarks	1-3
1.4	Descriptive data	1-4
1.4	4.1 Airframe	1-4
1.4	4.2 Engine	1-5
1.4	4.3 Propeller	1-5
1.5	View of the aeroplane (three projections)	1-6
1.6	List of definitions and abbreviations	1-7

1.1 Introduction

This Aeroplane Flight Manual is intended to provide pilots and instructors with information for safe and effective operation of this aeroplane which belongs to the Very Light Aeroplane category. This manual contains informative material, which is to be supplied to the pilot according to the requirements of JAR-VLA. Some supplementary information is also introduced into the content by the aeroplane manufacturer. It is the pilot's responsibility to acquaint him/herself with the contents of this manual, as well as with any revisions to it.

CAUTION

THIS AEROPLANE FLIGHT MANUAL IS NOT A FLIGHT TRAINING MANUAL. SEPARATE FLIGHT TRAINING MANUALS EXIST FOR THAT PURPOSE

Should this manual be lost, the General Inspectorate of Civil Aviation – Civil Aircraft Inspection Board is to be notified immediately, and if outside Poland, the local civil aviation authority. Anybody who finds this manual is requested to deliver it promptly to the manufacturer:

AERO AT Sp. z o. o. , ul. COP-u 2, 39-300 Mielec, Poland tel. +48 177745703 fax. +48 177745718;

e-mail: service@at-3.com

and if outside Poland, to the local civil aviation authority.

(3)

1.2 Basis of certification

This aircraft type has been approved by European Aviation Safety Agency in accordance with JAR-VLA regulations, amended through to amendment VLA/92/1 and holds a Type Certificate No. A.021.

6

1.3 Warnings, cautions and remarks

The definitions below concern the following expressions: warning, caution, note.

WARNING means that if the warnings concerned are not followed, this will lead to an immediate or significant reduction in flight safety

CAUTION means that if the precautions concerned are not followed this will lead to an immediate or significant reduction in flight safety

NOTE indicates all special issues, which do not directly affect flight safety, but are essential or unusual.

1.4 Descriptive data

This AT-3 R100 Very Light Aeroplane is a two-seat, single engine, low wing, all metal aeroplane, with a three-wheel fixed landing gear with a nose wheel.

1.4.1. Airframe:

1. Dimensions:

- Span	7.550 m / 24' 9 ¹ / ₄ "
- Length	6.150 m / 20' 6"
- Height	2.230 m / 7' 3 ³ / ₄ "
- Dihedral	3 °
- Lifting area	$9.30 \text{ m}^2 / 100.1 \text{ ft}^2$
- Mean aerodynamic chord	1.27 m / 4' 2"
- Wing loading	62.6 kg/m ² / 12.8 lb/ft ²
- Wing profile	NACA 4415

2. Control surface displacements:

 Slab tail (angles related to the fuselage base – red mark on the fuselage)

Trailing edge down	10° ±1°
Trailing edge up	12° ±1°

- \mbox{Trim} & balancing tab (angles related to the fuselage

base – red mark at the fuselage)

When the slab tail trailing edge is down,

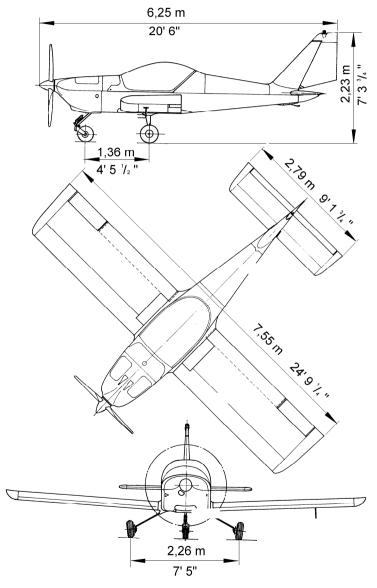
the tab is displaced downward, i.e. by maximum 26° ±3°

When the slab tail trailing edge is up,

the tab is displaced upwards, i.e. by maximum $44^{\circ} \pm 3^{\circ}$

Page 1-4 SEPTEMBER, 2004 AEROPLANE FLIGHT MANUAL

"AERO" Sp. z o. o. AT-3R100	SECTION 1 GENERAL
Ailerons (angles related to the wing chord)UpDown	20° ±2° 15° ±2°
 Rudder (angles related to the chord of the fin) Each side 	30° ±2° 🕲
Wing flaps (angles related to the wing chord)RetractedFor takeoffFor landing	0° ±2° 15° ±2° 40° +5/-2°
3. Landing gear	
- Wheel track - Main wheel tyre- Type 380 x 150	2.26 m / 7' 5"
- Pressure - Nose wheel tyre- Type 5.00-4	2.5 bar / 36 psi
- Pressure - Disc brakes	2.5 bar / 36 psi
- Disc brakes - Type of shock absorber	elastic strut


1.4.2. Engine

Four cylinder, horizontally opposed BOMBARDIER ROTAX, model 912S2 or 912S4 engine. The cylinders are air-cooled, the cylinder heads, by liquid coolant. Dual ignition. 73.5 kW / 98.5 HP take-off power, 69 kW / 92.5 HP continuous power.

1.4.3. Propeller

Wooden, fixed pitch, two-blade GT-2/173/VRR-FW101SRTC propeller with 1.73 m (5' 8") diameter and clockwise direction of rotation

1.5 View of the aeroplane (three projections)

Page 1-6 SEPTEMBER, 2004
AEROPLANE FLIGHT MANUAL

1.6 List of definitions and abbreviations

The following words or expressions have been used or may be helpful in particular Sections of this manual.

Basic speeds and their denotations:

- IAS "INDICATED AIRSPEED" means the speed of an air vessel indicated by its airspeed indicator co-operating with a Pitot tube, which is calibrated for the compressibility of an adiabatic airflow in the conditions of the standard atmosphere at sea level, without corrected errors of the airspeed measuring system. All IAS values in this manual presume the airspeed measuring system error to be zero.
- CAS "CALIBRATED AIRSPEED" means the speed of an air vessel after aerodynamic and instrument correction. The calibrated airspeed is equal to the true airspeed in the conditions of the standard atmosphere at sea level.
- **TAS "TRUE AIRSPEED"** means the airspeed of an air vessel, relative to the undisturbed airflow. It is CAS corrected by the change of air density depending on altitude and temperature.

TAS = CAS
$$\sqrt{\frac{\rho_o}{\rho}}$$

ho - air density at the particular altitude

V_{NE} – Maximum never exceed airspeed. This is a limit speed, which cannot be exceeded in any conditions.

- V_{NO} Maximum structural cruising speed. This is a limit speed which cannot be exceeded except in non-turbulent conditions, and then, only with care.
- V_A Manoeuvring speed. Above this speed, rapid or full displacement of the control surfaces may in certain circumstances result in exceeding the maximum permissible loads of the structure.
- V_{FE} Maximum airspeed with wing flaps extended. This is the maximum permitted airspeed of the aeroplane with wing flaps extended.
- V_{S1} Stalling speed, or minimum airspeed of steady flight, at which the aeroplane is steerable in any other configuration than the landing configuration.
- V_{s0} Stalling speed, or minimum airspeed of steady flight, at which the aeroplane is steerable in the landing configuration.
- V_x Airspeed for the maximum angle of climb. This is the airspeed, at which the maximum increase of altitude over the shortest distance may be achieved.
- V_Y Airspeed for the maximum rate of climb. This is the airspeed at which the maximum increase of altitude in the shortest time may be achieved.

Meteorological denotations

ISA – International Standard Atmosphere.

ISA assumptions:

- The air is a dry perfect gas
- The temperature at sea level is 15 °C / 59 F,
- The pressure at sea level is 1013.25 hPa,
- The drop in the temperature is 3.25 °C per each 500 m of altitude (3.564 $\mbox{\fontfamily for each 1000 ft})$ in the range from sea level up to the altitude, at which the temperature is -56.5 °C / -70 $\mbox{\fontfamily fontfamily font for each 1000 ft}).$

OAT – Outside Air Temperature. This is the temperature of the static air, read from the thermometer, or received from the ground meteorological service, with instrument error and air compressibility effect corrected.

Pressure altitude – This is the altitude read from the altimeter, preset to the standard pressure at the average sea level (1013 hPa).

Denotation of power and rating

Take-off power – Maximum power.

Maximum continuous power – Maximum power permitted for the whole flight.

Engine failure – any engine malfunction, engine stop included.

"AERO" Sp. z o o. AT-3 R100

SECTION 1 GENERAL

Terminology used for weights and definition of the centre of gravity of the aeroplane.

Maximum takeoff weight – it is the maximum aeroplane weight at the moment of beginning the takeoff

Maximum landing weight – it is the maximum aeroplane weight in the moment of touch down.

Empty aeroplane weight – It is the weight of the equipped aeroplane, with unusable fuel and full amount of operational agents (oil, cooling agent and hydraulic fluid).

Centre of Gravity – imaginary point on the aeroplane. The aeroplane suspended at this point is in equilibrium.

Limits of the CG – range of C.G positions, which must not be exceeded, when loading the aeroplane to a given total weight.

MAC – the Mean Aerodynamic Chord.

Consumable fuel – This is the amount of fuel which may be consumed, without symptoms of a rough engine running.

Unusable fuel – The amount of fuel, not less than that which gives the first symptoms of rough engine running, under the least favourable conditions for fuel feeding the fuel tank, which may occur during normal operation of the aeroplane.

Operational denotations

Take-off run – the distance from the location where the aeroplane begins to move, to the location where the aeroplane lifts-off from the takeoff surface.

Take-off distance – the distance from the location where the aeroplane begins to move, to the location where the aeroplane reaches the altitude of 15 m / 50 ft. This distance is to be measured parallel to the takeoff surface.

Landing distance – the distance from the location where the aeroplane has the altitude of 15 m / 50 ft, to the location where the aeroplane stops. This distance is to be measured parallel to the takeoff surface.

Landing run – the distance from the location where the aeroplane touches down on the landing surface, to the location where the aeroplane stops.

Demonstrated crosswind capabilities – value of crosswind velocity for which it has been demonstrated that for take-off and landing no extensive pilot force, skill or concentration is required.

"AERO" Sp. z o o. AT-3 R100

THIS PAGE IS LEFT INTENTIONALLY BLANK

Section 2

LIMITATIONS

	Page
2.1. Introduction	2-2
2.2. Airspeeds	2-2
2.3. Marking of the airspeed indicator	2-3
2.4. Power plant	2-4
2.5. Marking of the engine monitoring instruments	2-6
2.6. Weight	2-7
2.7. Centre of Gravity	2-8
2.8. Approved manoeuvres	2-9
2.9. Controlled Load Factors	2-10
2.10. Crew of the aircraft	2-10
2.11. Types of operation	2-10
2.12. Fuel	2-12
2.13. Number of seats	2-12
2.14. Limitation placards	2-12

2.1. Introduction

This Section contains the limitations on the operation of this aeroplane, the marking of the instruments and the basic informative placards required for safe operation of the aeroplane, engine, the standard systems and the standard equipment.

The limitations contained in this Section as well as those contained in Section 9 have been approved by the European Aviation Safety Agency.

2.2. Airspeed Limitations

Design	ation		IAS		
Airspeed		km/h	mph	kts	REMARKS
Maximum never exceed airspeed	VNE	236	146	127	This airspeed must not be exceeded in any condition of operation.
Maximum structural cruising speed	V _{NO}	208	129	112	This airspeed cannot be exceeded, except in non-turbulent conditions, and then, only with care.
Manoeuvring speed	VA	208	129	112	Above this airspeed, no full or rapid displacement of the control surfaces is to be applied, because in certain operational conditions, at full control displacement, the loading limit of the aeroplane may be exceeded.
Maximum airspeed with flaps extended	VFE	158	98	85	This airspeed is not to be exceeding when the wing flaps are extended to 15° or to 40°.

2.3. Marking of the airspeed indicator

The table below shows the markings of the airspeed indicator and the meaning of the colour coding.

White sector Range for safe deployment of wing flaps.

Green sector Range of normal operation.

Yellow sector Range of limited operation (manoeuvres to be

performed with care and in non-turbulent air only).

Red line Maximum airspeed for any kind of operation.

Airspeed ranges IAS				
		km/h	mph	kts
White sector	from	81	50	44
	to	158	98	85
Green sector	from	96	60	52
	to	208	129	112
Yellow sector	from	208	129	112
	to	236	146	127
Red line		236	146	127

7 bar / 101.5 psi

2 - 5 bar / 29 -72.5 psi

0.40 bar / 5.8 psi

2.4. Power plant

ENGINE

Manufacturer	BOMBARDIER-ROTAX
Engine model	912S2 OR 912S4
Maximum takeoff power	73.5 kW / 98.5 HP
Maximum continuous power	69 kW / 92.5 HP
Engine maximum RPM	
- take-off (5 MIN.)	5 800 rpm
- continuous	5 500 rpm
- idle	~1 400 rpm
Maximum cylinder head temperature (CHT)	
for engine S/N without Suffix -01	135°C / 275°F
for engine S/N with Suffix -01	120°C / 248°F
Oil temperature	
-maximum	130°C / 266°F
-minimum	50°C / 122°F
-normal operational	90 to 110 °C
	194 to 230°F
Oil pressure:	
-minimum	0.8 bar / 11.6 psi

Fuel pressure: -maximum

-maximum

-normal

∮ for fuel pump from S/N 11.0036	0.5 bar / 7.26 psi
-minimum	0.15 bar / 2.2 psi
Engine Starting Temperatures	
-maximum	50 °C / 122°F
-minimum	-25 °C / -13°F

"AERO" Sp. z o. o. AT-3 R100

SECTION 2 LIMITATIONS

(24)

Fuel:

Automotive gasoline, unleaded, minimum RON 95

EN228 Premium, EN228 Premium Plus, AVGAS 100LL.

Refer to the Rotax 912S Series Engine Operating Manual for limitations and recommendations relating to fuel grades used

Oils:

The oils, to be marked "SF" or "SG" according to API classification

from -5 °C to +40°C / 23°F to 104°F SAE 20W-50; SAE 20W-40

from -15 °C to +40 °C / 5 °F to 104 °F SAE 15W-40, 15W-50,

from -25 °C to +40 °C / -13 °F to 104 °F SAE 10W -40

from -30 °C to +40 °C / -22 °F to 104 °F SAE 5W-50; SAE 5W-40

- maximum amount of oil 3.5 litres / 3.6 US qts - minimum amount of oil 2.5 litres / 2.6 US qts

Cooling agent

Water-free, anti-freeze liquid suitable for aluminium radiators,

Capacity of the system – 2,8 litres (3.0 US qts)

For recommended by engine manufacturer types of coolant, see Rotax 912S Series Engine Operating Manual.

Propeller:

Manufacturer GT ELICHE

Propeller model GT-2/173/VRR-FW101SRTC

Two blade, wooden, fixed pitch

Diameter of the propeller 1.73 m / 5' 8"

Direction of rotation Clockwise

2.5. Marking of the engine monitoring instruments

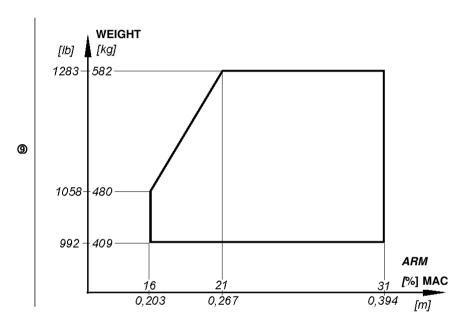
Stated below, are the ways in which the engine monitoring instruments are marked, as well as the meanings of the coloured markings.

Coloured marking	Red line or sector	Green sector	Yellow sector	Red line or sector
The instrument, or the measured parameter	Minimum limit	Range of normal operation	Range of limited operation	Maximum limit
Tachometer	-	1,400 to 5,500 rpm	0 - 1400 rpm, 5500 - 5800 rpm	5800 - 7000 rpm
Oil temperature	50℃ (120℉)	90÷110℃ (194÷230℉)	50÷90°C (120÷194°F) 110÷130°C (230÷266°F)	130℃ (266℉)
СНТ	-	75÷135 ℃ ¹⁾ 167÷275 ℉ ¹⁾ 75÷120 ℃ ²⁾ 167÷248 ℉ ²⁾	_	135 ℃ ¹⁾ 275 ℉ ¹⁾ 120 ℃ ²⁾ 248 ℉ ²⁾
Exhaust gas temperature	-	600÷850℃ 1112÷1560℉	850÷880℃ 1560÷1616℉	880÷900℃ 1616÷1652℉
Oil pressure	0,8 bar (11.6 psi)	2÷5 bar (30÷72.5 psi)	0,8÷2 bar (11.6÷30 psi) 5÷7 bar (72.5÷101.5 psi)	7 bar (101.5 psi)
Fuel pressure	0,15 bar (2.2 psi)	0,15÷0,4 bar (2.2÷5.8 psi)	-	0,4 bar (5.8 psi) 0,5 bar ³⁾ (7.26 psi) ³⁾

(19)

¹⁾ for engine S/N without Suffix -01

²⁾ for engine S/N with Suffix -01


³⁾ for fuel pump from S/N 11.0036

2.6. Weight

Maximum take-off weight	582 kg / 1283 lb
Maximum landing weight	582 kg / 1283 lb
Empty, equipped aeroplane weight	350 kg / 772 lb
Maximum load in the luggage compartment:	30 kg / 66 lb
- port luggage compartment (large)	20 kg / 44 lb
- starboard luggage compartment (small)	10 kg / 22 lb

2.7. Limitation of C.G position

Distance of the extreme C.G. positions from the leading edge of the Mean Aerodynamic Chord (MAC).

2.8. Approved manoeuvres

The aeroplane is approved to perform the following manoeuvres:

- All normal flight manoeuvres
- Stall (except tail slide)
- Lazy eight
- Chandelle
- Steep turn not exceeding 60° of bank

Entry airspeed:	IAS		
	km/h	mph	kts
Lazy eight	190	118	102
Chandelle	220	136	118
Steep turn with 60° of bank	170	105	91

WARNING! AEROBATICS AND INTENTIONAL SPINS ARE PROHIBITED

2.9. Controlled Load Factors

The limits of maximum permissible load factors:

With wing flaps retracted: -1.5 to +3.8

With wing flaps extended: 0 to +2

2.10. Crew of the aircraft

The minimum crew of this aeroplane is 1 pilot

2.11. Types of operation

This aeroplane is approved for flights by day in Visual Meteorological Conditions (VMC-Day)

This aeroplane is approved to operate according to Day VFR, when the equipment specified in the LIST OF MINIMUM EQUIPMENT is installed and working correctly.

WARNING! FLIGHTS IN KNOWN ICING CONDITIONS ARE PROHIBITED.

LIST OF MINIMUM EQUIPMENT

SYST	EMS OR DEVICES,	VFR DAY*
ELEC	TRIC POWER SYSTEM AND DEVICES	
1. Ba	attery	1
2. Al	ternator	1
3. Vo	oltammeter	1
4. G	enerator warning light	1
FLIGH	HT AND NAVIGATION INSTRUMENTS	
1. Ai	rspeed indicator	1
2. Al	timeter	1
3. M	agnetic compass	1
ENGI	NE MONITORING INSTRUMENTS	
1. Ta	achometer	1
2. Cy	ylinder head temperature indicator	1
3. Ex	xhaust gas temperature indicator	1
4. Oi	il temperature indicator	1
5. Oi	il pressure indicator	1
6. Fu	uel quantity indicator	1
7. Fu	uel pressure indicator	1

^{* -} In the column "VFR DAY" the equipment is marked, which must be installed and correctly operating.

2.12. Fuel

Fuel tank: capacity:

- Total capacity
- Consumable fuel

68.5 litres / 18.09 US gal 65.0 litres / 17.7 US gal 3.5 litres / 0.92 US gal

Approved fuel:

- Unusable fuel

- Automotive unleaded gasoline of minimum RON 95.
 EN228 Premium, EN228 Premium Plus
- Aviation gasoline AVGAS 100LL.

(Refer to the Rotax 912S Series Engine Operating Manual for limitations and recommendations relating to fuel grades used)

2.13. Number of seats

This aeroplane has two seats.

The dual control system enables the aeroplane to be controlled from both the port and starboard seats.

2.14. Limitation placards

Placards on the instrument panel:

AT-3 R100 AIRPLANE, APPROVED IN ACCORDANCE
WITH JAR-VLA FOR VFR-DAY OPERATIONS.
FLIGHTS IN KNOWN ICING CONDITIONS PROHIBITED.
AEROBATIC MANOEUVRES INCLUDING SPINS PROHIBITED.
OTHER LIMITATIONS ACC. TO AIRPLANE FLIGHT MANUAL

On the instrument panel below of the airspeed indicator

 $V_A = 208 \text{ km/h IAS}$

or

MAX MANOEUVRING SPEED

V_A = 112 KTS IAS

or

MAX MANOEUVRING SPEED

VA = 129 MPH IAS

On the starboard luggage compartment

LUGGAGE 10 kg

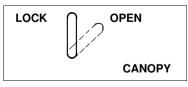
or

LUGGAGE 22 lb

On the port luggage compartment

LUGGAGE 20 kg

or


LUGGAGE 44 lb

On the jettisoning handle of the canopy

PULL TO JETTISON CANOPY

On the opening handle of the canopy

On the fuel tank filler

(14)

FUEL 65 LITRES
UNLEADED MIN RON 95
EN228 Premium/Premium Plus
AVGAS 100LL

On the oil filler, one from below labels:

OIL 3,5 L

OIL 3.6 US QTS

Section 3

EMERGENCY PROCEDURES

	Page
3.1. Introduction	3-2
3.2. Engine failure	3-2
3.2.1. Engine failure during takeoff	3-2
3.2.2. Engine failures in flight	3-2
3.3. Engine re-starting in flight	3-3
3.4. Smoke and fire	3-4
3.4.1. Fire on ground	3-4
3.4.2. Fire in flight	
3.5. Gliding	3-5
3.6. Emergency landing	
3.6.1. Precautionary landing	3-5
3.6.2. Landing after engine failure	3-6
3.7. Recovering from unintentional spin	3-6
3.8. Other emergency procedures	3-7
3.8.1. lcing	3-7
3.8.2. Abandoning the aeroplane with use of parachute	3-7
3.8.3. Failure of the electric system	3-7
3.8.4. Failure of the static or pitot pressure systems	
3.8.5. Failure of balancing tab control system of slab tail	

3.1. Introduction

Section 3 contains information concerning controlling and procedures, which are to be utilised in emergency situations, and which may occur during aeroplane operation.

To prevent danger in emergency situations, the basic indications contained in this section are to be considered and applied as required.

3.2. Engine failures

3.2.1. Engine failure during takeoff

Maintain airspeed IAS = 112 km/h / 70 mph / 60 kts

• Fuel pump. OFF

• Fuel valve SHUT

• Throttle IDLE

• Ignition switch OFF

Battery and generator
 OFF

Landing: ahead avoiding obstacles, if any

3.2.2. Engine failures in flight

Fuel pressure drop, engine power drop

Fuel pumpON

Fuel valve opening
 To be CHECKED
To be CHECKED
To be CHECKED

Fuel quantity on board To be CHECKED

- Excessive engine vibration

Carburettor heatingFuel pumpSwitch ON

- Exceeding the cylinder head temperature:

• Temperature of the exhaust gases – for To be CHECKED comparison

Over-speeding the engine

Exceeding the maximum oil temperature

• The oil pressure drops below the permissible minimum

CAUTION.

IN ALL OF THE ABOVE CASES, REDUCE THE POWER TO THE MINIMUM POSSIBLE, FLY TO THE NEAREST AIRFIELD, AND – BE PREPARED FOR PRECAUTIONARY LANDING

(8)

OCTOBER, 2009

IAS = 120 km/h / 75 mph / 65 kts

3.3. Engine re-starting in flight

Maintain airspeed

•	•
 Fuel quantity in the tank 	To be CHECKED
Fuel valve	OPEN
Emergency fuel pump	Switch ON

• Throttle to be set IDLE (or 10 % opening)

• Choke – (when the engine is cool) ON

• If the propeller does windmill – ignition ON

If the propeller has stopped – engine
 ON
starter

If the engine starts to run:

Throttle, according to the required power

SET

Operational parameters of the engine
 To be CHECKED

Emergency fuel pump
 OFF

If the engine does not start to work Perform

EMERGENCY LANDING

NOTE

The engine can be re-started in the entire range of operational airspeeds and altitudes. The loss of altitude and airspeed during engine re-starting in flight is not great.

No other special procedures are required for engine re-starting in flight.

3.4. Smoke and fire

3.4.1. Engine fire on ground

In case of engine fire on ground take the following steps below:

Fuel valve	SHUT
Throttle	FULL OPEN
Ignition switch	OFF
Electrical equipment	OFF
Battery and generator	OFF
Fire extinguisher	TO BE USED

3.4.2. Fire in flight

In case of engine fire in flight

Maintain airspeed	IAS = 120 km/h / 75 mph / 65 kts
 Fuel valve 	PULL SHUT
• Throttle	FULL OPEN
 Ignition switch 	OFF
 Battery and generator 	OFF
 Cabin canopy vents 	SHUT
• A side-slip – opposite to the fire, to blow it out	TO BE PERFORMED
 When the engine stops 	PERFORM EMERGENCY LANDING

CAUTION.

AFTER AN ENGINE FIRE
DO NOT TRY TO RE-START THE ENGINE

"AERO" ,Sp. z o.o. AT-3 R100

SECTION 3 EMERGENCY PROCEDURES

In case of fire in the electrical system

Maintain airspeed
 IAS = 120 km/h / 75 mph / 65 kts

Electrical equipment
 OFF

Fire extinguisher (if fire is in the cabin)
 TO BE USED

Cabin canopy vents
 KEEP OPEN

• If the fire persists, decide upon a place for landing.

3.5. Gliding flight

Recommended aeroplane Wing flaps retracted configuration

Airspeed IAS = 120 km/h / 75 mph / 65 kts

• Throttle IDLE

• Gliding ratio (No power) 8

3.6. Emergency landing

3.6.1. Precautionary landing

Landing place IDENTIFY

• Wing flaps to 40° EXTEND

Maintain approach airspeed
 IAS = 100 km/h / 62 mph / 54 kts

Safety belts
 FASTEN FIRMLY

Electrical equipment
 OFF

Locks of the canopy
 UNLOCK

Before touch-down:

Fuel valve
 PULL SHUT

Battery and generator
 OFF

• Ignition switch OFF

 Levelling out directly before touchdown. After touching-down, keep control stick fully pulled.

SEPTEMBER, 2004

Page 3-5

3.6.2. Landing after engine failure

• Wing flaps to 40° EXTEND

Maintain approach airspeed
 IAS = 100 km/h / 62 mph / 54 kts

Safety belts
 FASTEN FIRMLY

Locks of the canopy
 UNLOCK

Electrical equipment
 OFF

• Fuel valve PULL SHUT

Battery and generator
 OFF

• Ignition switch OFF

• Throttle IDLE

3.7. Recovering from unintentional spin

In case of an unintentional spin, the following recovering procedure is to be used.

• Throttle IDLE

Rudder – opposite to aeroplane APPLY rotation

Control stick
 NEUTRAL

• Ailerons NEUTRAL

Wing flaps
 RETRACT

When the aeroplane stops to rotate

Rudder NEUTRAL

• Control stick - gentle proceed to level flight

Throttle – for level flight
 TO BE SET

WARNING
INTENTIONAL SPINNING IS PROHIBITED

3.8. Other emergency procedures

3.8.1. Icing

 The aeroplane is not equipped with a de-icing system. Therefore the area, where icing conditions exist is to be left as soon as possible.

Carburettor heating

ON

· Heating of the cabin

ON

• To a limited degree, some ice may be removed by hand, through the window of the cabin.

3.8.2. Abandoning the aeroplane with use of parachute

Maintain airspeed
 IAS = 120 km/h / 75 mph / 65 kts

Fuel Valve
 PULL SHUT

• Ignition switch OFF

Battery and generator

OFF

Headset cables
 DISCONNECT

Safety belts
 UNFASTEN

 Canopy (Pull both jettisoning levers and push out the canopy both hands
 TO BE JETISONED

• The aeroplane TO BE ABANDONED

• The parachute, at a safe distance: DEPLOY

3.8.3. Failure of the electric system

- Check the condition of the system (Voltammeter, generator signalling light)
- Check the circuit breakers and fuses. Switch ON again, as required

In case of generator failure act as follows:

Generator
 OFF

Power receivers, not required to continue the flight

3.8.4. Failure of the static and pitot pressure systems

The failure of the flight and navigation instruments might be caused by leakage or constriction of the pipes of the static or pitot pressure systems.

In case of failure of the static or pitot pressure system, the landing approach is to be performed with flight parameters monitored by the tachometer and other correctly working flight and navigational instruments only. On ground, water sediment is to be removed from the systems, and the sensors of static and pitot pressure checked to be clean and not constricted. Have the systems checked for leakage.

3.8.5. Failure of balancing tab control system of slab tail

In case of failure of the balancing tab control system of the slab tail in flight, if the aeroplane becomes "tail heavy" (the nose rises), the airspeed is to be reduced to read about IAS = 112 km/h / 70 mph / 60 kts to reduce the force on the control stick

Section 4

NORMAL PROCEDURES

		Page
4.1.	Introduction	4-2
4.2.	Rigging and de-rigging the aeroplane	4-2
4.3.	Daily pre-flight and post-flight inspection	
4.4.	Preparation for flight	
4.4.1.	Determining weight and centre of gravity	4-4
4.4.2.	Pre-flight Inspection of the aeroplane	
4.5.	Normal procedures and list of inspection tasks	4-8
4.5.1.	Airspeeds for safe operation	
4.5.2.	Before starting engine	4-8
4.5.3.	Using an electric ground power source	4-9
4.5.4.	Engine starting	4-9
4.5.5.	Before taxiing	4-12
4.5.6.	Taxiing	4-12
4.5.7.	Before takeoff	4-13
4.5.8.	Takeoff	4-13
4.5.9.	Climb	4-13
4.5.10.	Cruise	4-14
4.5.11	Descent	
4.5.12.	Before landing	4-14
4.5.13.	Landing	4-14
4.5.14.	Balked landing	4-14
	After the landing	
4.5.16.	Engine shutdown	4-15
4.5.17.	After the flight	
4.6.	Additional information	
4.6.1.	Stall	
4.6.2.	Flight manoeuvres	
4.6.3.	Flight with a passenger	
4.6.4.	Crosswind takeoff or landing	
4.6.5.	Operational speed during takeoff and landing	4-17

4.1. Introduction

Section 4 contains the list of inspection tasks and detailed procedures for normal aeroplane operation with standard equipment installed. Normal procedures concerning the optional equipment or systems are contained in Section 9.

4.2. Rigging and de-rigging the aeroplane

If de-rigging the aeroplane and preparation for transportation is necessary, refer to Aeroplane Maintenance Manual of AT-3 R100 Aeroplane, Section 2.6 – Transport of the de-rigged Aeroplane

4.3. Daily pre-flight and post-flight inspection

Recommended daily pre-flight inspection:

- Check amount of fuel, oil and engine coolant
- Check for leaks of oil, fuel and coolant.
- Drain fuel sediment
- Check condition of exhaust pipes.
- Check condition of nose and main landing gear:
 - condition of the tyres,
 - tyre pressure, (visually)
 - condition of rubber shock absorber of the nose landing gear.
- Check condition of engine cowling, its locking and securing.
- Visually check propeller blades are clean and in good condition.
- Visually check the cockpit canopy is clean.
- Check the canopy for correct opening and locking.
- Check the inspection holes in the fuselage and wing are closed and locked.

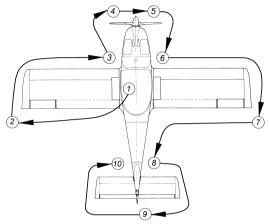
- Check the sensor of pitot and static pressure is clean
- Check the sediment tanks of the pitot and static pressure systems in the following way:
 - Unscrew the caps.
 - Check the caps are dry (if not, evacuate the sediment)
 - Screw on and tighten the caps onto the sediment tanks.
- Check condition and cleanliness of radio antennas.
- Visually check condition of the stabilisers and control surfaces.
- Visually check condition and secure fixing of the safety belts.
- Check free and smooth movement of the flight control system i.e. the elevator, rudder, ailerons and wing flaps, and check it for significant play or excessive friction.
- Check the levers controlling the engine move smoothly.
- Visually check condition of all board instruments.
- Check condition of battery and of the electric system.

- BATTERY switch	ON
- Indication of voltammeter	CHECK
- Turn indicator, artificial horizon	CHECK
- Radio equipment	CHECK

The battery is serviceable if the voltammeter reads not less than 12 V.

Recommended daily post-flight inspection

- Check the fuel, oil and cooling systems for leaks.
- Check fixing and general condition of the radio antennas
- Check the general condition of the aeroplane and its landing gear.


4.4. Preparation for flight

4.4.1. Determining weight and Centre of Gravity

The pilot is responsible for the correct aeroplane loading. It is his duty to ensure that the C.G. position does not move outside the permissible limits defined in item 2.7 Centre of Gravity. The method for calculating total weight and C of G position is given in Section 6 "Weight and Balance"

4.4.2. Pre-flight inspection of the aeroplane

It is the duty of the pilot to perform a pre-flight inspection prior to the flight or after a break in flights, when he has left the cabin. The inspection is to be made, starting with the cabin and walking clockwise around the aeroplane.

(1.) Cabin

JULY, 2010	Page 4-5
- Fuel pump – to be switched OFF	CHECK
- Fuel valve – to be set OFF	CHECK
- Carburettor heating – to be set OFF	CHECK
- Wing flap setting to 40°	ESTABLISH
- Wing flap – Extension	CHECK
- Take-off setting	ESTABLISH
- Full travel	CHECK
- Balancing tab	
and extensive friction	CHECK
- Flight controls - Free movement, lack of significant play	
- Seat belts	CHECK
- Luggage, collapsible tow bar - if will carry	SECURE
- Condition of the seats	CHECK
- Collapsible tow bar from flying controls – if installed	REMOVE
- Inside cabin– All foreign items	REMOVE
- Canopy – Opening, closing and operation of locks	CHECK

SECTION 4 NORMAL PROCEDURES	"AERO" Sp. z o. o. AT-3 R100
- Ignition – to be set OFF	CHECK
- Fuel level – to be checked with the gauge	CHECK
- Battery and generator - to be switched OFF	CHECK
- All electrical equipment to be switched OFF	CHECK
- Parking brake – if installed	ON
(2.) Port wing	
- Structure - Condition and cleanliness	CHECK
- Wing flap - Condition of structure and play in control	
system and hinges - Ailerons – Condition of structure and play in control	CHECK
system and hinges	CHECK
- Pitot tube - Fixing and cleanliness	CHECK
- Inspection flap – to be closed and locked	CHECK
(3.) Port landing gear	
- Tyre – Check the tyre pressure (visually)	CHECK
- Brake system	CHECK
(3.) (4.) Fuselage front part	
- Canopy – Visually check cleanliness	CHECK
- Fuel tank - Fuel quantity and locking the filler-cap	CHECK
- Engine cowling – Locking and leaks	CHECK
- Propeller and spinner - Condition and cleanliness	CHECK
- Exhaust pipes - Condition	CHECK
 Antenna of transponder – Condition and fixing 	CHECK
- Fuselage bottom surface -Condition and cleanlines	
- Air intake covers - installed	CHECK
NOTE	
It is recommended that Air Intake Covers an	
when operating the aircraft in ambient ten below 12 ^o C/54 ^o F	nperature
(5.) Nose landing gear	
Tyre – Check the tyre pressure (visually)	CHECK
Shock absorber – Condition	CHECK
Towing bar - to be removed from the aeroplane	CHECK
Page 4-6	JULY, 2010

JULY, 2010

9

Page 4-7

(6.). Starboard landing gear and front part of fuselage

CHECK
CHECK
CHECK

CAUTION

When turning the propeller by hand, special care is to be observed and the following is to be checked:

- the ignition is switched off,
 - the parking valve is on, or
 - the chocks are put under wheels.

The possibility of spontaneous ignition always exists

(7.) Starboard wing - Structure - Condition and cleanliness CHECK - Ailerons - Condition of structure and play in control system and hinges CHECK. - Wing flap - Condition of structure and play in control CHECK. system and hinges - Inspection flap – to be closed and locked CHECK (8.) Fuselage rear part, starboard Structure – Condition and cleanliness. CHECK Antennae – Condition and cleanliness CHECK (9.) Empennage Fin – Condition and cleanliness. CHECK - Rudder – Hinges and their play CHECK CHECK - Slab tail - Hinges and their play CHECK - Trim & balancing tab - Hinges and their play (10.) Fuselage rear part, port - Structure - Condition and cleanliness CHECK - Inspection flap - to be locked CHECK

JULY, 2010

4.5. Normal procedures and list of inspection tasks

4.5.1. Airspeeds for safe operation

			IAS	
Airspeed	Flaps	km/h	mph	kts
Take off: – lift-off	15⁰	77	48	42
– at altitude 15 m		112	70	60
Maximum angle of climb (VX)	0º	110	68	59
Maximum rate of climb (VY)	0º	120	75	65
Maximum angle of climb (VX)	15⁰	100	62	54
Maximum rate of climb (VY)	15⁰	110	68	59
In rough air (recommended)	0º	160	99	86
Landing approach	40⁰	100	62	54
Maximum cross-wind component	0 to 40º	21.6	13.4	11.7

4.5.2. Before starting engine

9

Page 4-8

- Seat in the cabin TO BE OCCUPIED SHUT AND LOCK - Canopy - Luggage - stow & secure CHECK - Seat belts **FASTEN** - Reading of the fuel quantity indicator CHECK - Ignition - to be switched off CHECK CHECK - Battery and generator - to be switched off - All electrical equipment - to be switched off CHECK - Trim and balancing tab – to be set to "TAKEOFF" CHECK - Flight controls - full and free movement of CHECK - Wing flaps RETRACT - Parking brake (if installed) OFF

4.5.3. Using an electric ground power source

The aeroplane is equipped to use electric power from external sources. A typical power receptacle (of 11041 – type) is installed at the port side of the fuselage, in front of the wing. The polarity of the delivered connecting cable is marked on it. Special attention is to be given to the correct polarity, when connecting to the external source (Battery). The voltage of the external source must be 12 to 14 Volts.

The engine starting procedure, when using an external power source, is the same as when using the aeroplane's own battery.

After completing engine start, the external source is to be disconnected from the aeroplane.

CAUTION

Incorrect connection of the poles may result in damage of the electrical system of the aeroplane

4.5.4. Engine starting

CAUTION

Engine started is prohibited with the parking brake on

CAUTION

During conducting the engine test, in spite of brakes using the aircraft can be move. To avoid this it is recommended additional securing the aircraft against move by chocks putted under wheel.

Take special care during the engine starting and testing without apply chocks under the wheel.

9

SECTION 4 NORMAL PROCEDURES

"AERO" Sp. z o. o. AT-3 R100

Cool engine procedure

9

- Fuel valve – set to OPEN

- Starting device (Choke) ON

- Battery and generator ON

- "GENERATOR FAILURE" light - illumination CHECK

- Fuel pump ON

- Throttle lever – to be set to IDLE (or open by 10 %)

- The area next to propeller – to be clear CHECK

- Parking brake - off CHECK

- Brakes APPLY

- Ignition switch ON

The starter may be switched on continuously for 10 sec., maximum. Subsequently, it needs to be allowed to cool for at least 2 min. When starter is working the "STARTER ENGAGED" light is illuminated.

NOTE

After completing the engine start, check whether the oil pressure starts to rise within 10 sec. The speed of the engine may be increased, only when the oil pressure is stabilised above 2 bar (29 psi).

CAUTION

To avoid damage to battery or starter, never keep the starter switched on for longer than 10 sec. Allow at least 2 min. before switching on again. Never switch the starter on if the propeller has not stopped rotating. Do not start the engine when the battery is weak – this may cause damage to the engine starting system. Proper propeller rotation is evidence of good condition of the battery. Otherwise, switch off the engine, the starter and battery switches and have the fault repaired.

Hot engine procedure

The same as for cool engine start, but without turning the propeller and the starting device (choke) is to be set to OFF.

Procedure for low temperature

The procedure is the same as for cool engine, but the throttle lever may be set to idle only. The carburettor heating is to be switched on. The oil pressure is to be observed carefully. It may be lower because of increased drag of the flow through the oil pump.

If necessary, have the engine warmed up using a hot air blower.

To improve the engine operations in low ambient temperature it is recommended that the air intake covers are used.

NOTE

At low ambient temperature engine starting may prove difficult, because of a drop in the capacity of the battery. Using external electrical power is recommended

After starting the engine

- Engine speed of 2500 RPM	MAINTAIN	
keep until smooth engine operation is achieved - "GENERATOR FAILURE" light – go out	CHECK	
- "STARTER ENGAGED" light – go out	CHECK	8
- Choke	OFF	
- Fuel pump	OFF	8)
- Electrical equipment	ON ^I	_
- Indications of board instruments	CHECK	

- Engine speed of 2000 to 2500 RPM – until oil temperature MAINTAIN

Engine test run

of 50 °C is achieved

- Brakes	APPLY
- Control stick	PULL
- Indications of board instruments - to be within the	CHECK
green sector of the scale	
- Engine speed to 4000 RPM	SET

OCTOBER, 2009

Page 4-11

NORMAL PROCEDURES	AT-3 R10
Ignition switch in position "1"	SET
Ignition switch in position "2"	SET
Ignition switch in position "1 +2"	SET
Throttle – full open	SET
Maximum engine speed	CHECK

"AERO" Sp. z o. o.

NOTE

Maximum engine speed on ground is 5050 RPM.

RPM drop when one ignition unit only operating is 300 RPM. Maximum difference of engine speed between position "1" and position "2" must not exceed 120 RPM

Carburettor heating CHECK
Engine idle speed (~1600 RPM) CHECK
Engine (short time) COOLING

4.5.5. Before taxiing

SECTION 4

9

Artificial horizon
 Turn indicator
 Altimeter
 Radio
 Transponder (if required) – code and SBY

ON
SET
SET ON AND CHECK
SET
SET

4.5.6. Taxiing

- Brakes RELEASE

- Operation of the brakes CHECK

Control stick – to be set according to wind condition EXECUTE
 Taxiing is to be performed using brakes, and at higher speed, with use
 of the rudder

CAUTION!

TO AVOID ENGINE OVERHEATING AND POLLUTION WITH DUST, OPERATION OF THE ENGINE ON GROUND AT RATINGS HIGHER THAN THE REQUIRED FOR TAXIING IS TO BE LIMITED TO A MINIMUM

Page 4-12 JULY, 2010

"AERO" Sp. z o. o. AT-3 R100

SECTION 4 NORMAL PROCEDURES

4.5.7. Before take-off

CHECK
CHECK
ON
CHECK
EXECUTE
CHECK
OFF
CHECK

- Turn indicator and artificial horizon - to operate correctly

4.5.8. Take-off

- Brakes

- Throttle - to be opened to full travel, gra	dually EXECUTE			
- Take-off direction - maintain using rudd	er pedals EXECUTE			
- Airspeed after lift-off to be maintained at IAS=112 km/h /70 mph/60 kts				
- Landing gear - rotating wheels	BRAKE			
- When height 15 m/50' reached				
 increase to speed to 	IAS=120 km/h / 75 mph / 65 kts			
- Wing flaps	RETRACT	ı		
- Fuel pump (over 100m (300 ft))	OFF	8		

- Fuel pump (over 100m (300 ft))	OFF
4.5.9. Climb	
 Throttle – to be opened to full travel Airspeed – for climb, to be maintained at (The best climbing speed diminishes for each 1000 m / 3281' by 3 km/h / 1.9 mph / 1.6 kts) Engine operational parameters – to be 	EXECUTE IAS=120 km/h / 75 mph / 65 kts MONITORED
- Transponder (if required) – to be set to	ON

RELEASE

SECTION 4 NORMAL PROCEDURES	"AERO" Sp. z o. o. AT-3 R100
4.5.10. Cruise	
- Throttle – as required	SET
- Trim and balancing tab – as for cruise	SET
- Engine operational parameters - to be	MONITORED

4.5.11. Descent

- Throttle – as required - Fuel pump

- Coolant and oil temperature – to be
(If the engine becomes too cool, the throttle is to be opened and the carburettor heating to be switched ON)

SET

ON

4.5.12. Before landing

- Fuel pump ON - Carburettor heating – as required SET - Throttle – as required SET - Wing flaps – as for landing (δ = 40 °) SET

- Airspeed for final approach to be maintained: IAS = 100 km/h /62 mph/54 kts

4.5.13. Landing

Engine rating at altitude below 15 m (50ft), to be
 Touch-down with the main wheels at airspeed IAS = 80 km/h / 50 mph/ 43 kts
 Throttle
 Braking

AS REQUIRED

4.5.14 Balked landing

Carburettor heating
 Throttle – gradually
 Airspeed – to be
 Wing flaps – gradually
 Airspeed – to be maintained:
 IAS = 120 km/h / 75 mph / 65 kts
 Proceed to climb

EXECUTE

4.5.15. After the landing

Fuel pump
 Carburettor heating
 Wing flaps
 RETRACT

Page 4-14 OCTOBER, 2009 AEROPLANE FLIGHT MANUAL

"AERO" Sp. z o. o. AT-3 R100

SECTION 4 NORMAL PROCEDURES

- Artificial horizon OFF and LOCK
-Turn indicator OFF
- Transponder OFF

4.5.16. Engine shutdown

Radio transmitter
 Electrical equipment
 Throttle – to be set to
 (let the engine cool to normal operational level)
 Ignition switch (Allow 2 to 3 min.)
 When the engine stops:
 Battery and generator
 SWITCH OFF

- Fuel valve SHUT OFF

4.5.17. After the flight

Parking brake ON or put chocks under wheels
 Control stick – to be pulled and fastened with the seat belts
 Canopy – to be locked with the key
 Propeller – to be set horizontally

EXECUTE
EXECUTE
EXECUTE

4.6. Additional information

4.6.1. Stall

Stall is to be performed, by slowly pulling the control stick. The engine is to be idle. When the wing flaps are retracted, the aeroplane practically does not stall. Approaching the stalling speed is signalled by aeroplane buffeting, which appears at an airspeed 10 to 20 km/h / 5 to 10 knots / 6 to 12 mph higher than the stalling speed. The aeroplane oscillates longitudinally and laterally. The aeroplane recovers to full steerability, immediately after pushing the control stick forward.

JULY, 2010 Page 4-15

CAUTION! NEVER TRY TO STALL AT LOW ALTITUDE

For stall speed – refer to Section 5.

NOTE

At engine ratings higher than idle, the stalling speed is lower than that given in the table, by 2 to 15 km/h / 1.2 to 9.3 mph / 1 to 8 kts depending on wing flap position and aeroplane weight.

4.6.2. Flight manoeuvres

The flight manoeuvres are to be performed in accordance with the limits given in item 2.8. Approved manoeuvres.

Steep turns are to be flown with the throttle fully opened.

4.6.3. Flight with a passenger

The pilot is obliged to instruct the passenger on how to behave in an aeroplane cabin.

4.6.4. Crosswind take-off or landing

The correct aeroplane handling characteristics during takeoff and landing have been demonstrated at crosswind velocity up to 6 m/s (21.6 km/h / 13.4 mph / 11.7 kts).

Take-off

The control stick is to be displaced against the crosswind. The take-off direction is to be controlled by use of the rudder. The nose wheel is to be kept down until lift-off speed is achieved. After taking-off, try to avoid touching the ground again.

Landing

The wing flaps are to be extended as required for the conditions of the landing field. Have the aeroplane banked towards the crosswind. In a

Page 4-16 SEPTEMBER, 2004 AEROPLANE FLIGHT MANUAL

strong crosswind, also turn the aeroplane axis from the landing direction towards the crosswind.

Turn back to the landing direction immediately before touchdown.

Lowering the nose wheel earlier after touchdown helps to maintain direction. After touchdown keep the nose wheel down and control the direction with the rudder, and later with the brakes. At the end of the landing run keep the control stick against the crosswind.

4.6.5. Operational speed during takeoff and landing

Stated below in the table are the operational airspeeds for the approved wing flap positions.

	TAKE-OFF IAS										
Flaps	Lifting the nose wheel			L	ifting o	ff	After the takeoff				
	km/h	mph	kts	km/h	mph	kts	km/h	mph	kts		
0º	65	40	35	85	53	46	120	75	65		
15⁰	65	40	35	77	48	42	112	70	60		
40º	-	-	-	-	-	-	-	-			
	LANDING IAS										
Flaps	Approach Touchdown					vn	Loweri wheel	ng the	nose		
	km/h	mph	kts	km/h	mph	kts	km/h	mph	kts		
0º	120	75	65	98	61	53	80	50	43		
15⁰	112	70	60	90	56	49	78	48	42		
40º	100	62	54	80	50	43	<60	<37	<32		

THIS PAGE IS LEFT INTENTIONALLY BLANK

Section 5

PERFORMANCE

	Page
5.1. Introduction	. 5-2
5.2. Approved data	. 5-3
5.2.1. Calibration of the airspeed indicator system	. 5-3
5.2.2. Stalling speed	. 5-4
5.2.3. Take-off performance	. 5-5
5.2.4. Landing distance	. 5-6
5.2.5. Climb performance	. 5-8
5.3. Supplementary information	5-11
5.3.1. Cruise	5-11
5.3.2. Climb after balked landing	5-13
5.3.3. Take-off and landing on grass airstrips	5-13
5.3.4. Affect of rain or insect remains on aeroplane performance and handling	5-13
5.3.5 Demonstrated range of operational temperatures	5-13
5.3.6. Demonstrated crosswind on take-off and landing	5-14
5.3.7 Combined diagram of aeroplane characteristics	5-15
5.3.8 Maica	5-16

(11)

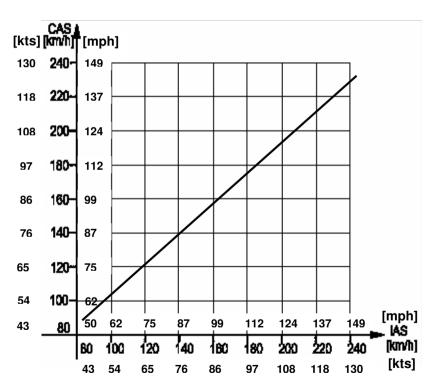
5.1. Introduction

This Section contains approved data concerning the following issues:

- Calibration of the airspeed indicator system.
- Stalling speeds
- Take-off performance.
- Supplementary information from the manufacturer.

The diagrams have been computed on the basis of actual flight test data, for correct engine and aircraft operation and applying average piloting techniques.

5.2. Approved data


5.2.1. Calibration of the airspeed indicator system

The diagram is based on test flight data.

 $CAS = IAS + \delta V$

 δV – aerodynamic correction

CLIMB, LEVEL FLIGHT, DESCENT WING FLAPS: retracted, for take-off and for landing

5.2.2. Stalling speed

Aeroplane maximum weight 582 [kg]

Throttle idle

ing ment	gle		Stalling speed								
Angle of wing flap displacement	Value of the banking angle		km/h	IAS mph	kts	km/h	CAS mph	kts			
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-			-				
0°		V_{S1}	86	53	46	93	58	50			
15°	0°	V_{S1}	81	50	44	90	56	49			
40°		V _{SO}	72	45	39	82	51	44			
0°		V_{S1}	93	58	50	100	62	54			
15°	30°	V _{S1}	90	56	49	97	60	52			
40°		V _{SO}	79	49	43	88	55	47			
0°		V _{S1}	129	80	70	131	81	71			
15°	60°	V _{S1}	124	77	67	127	79	69			
40°		V_{SO}	111	69	60	116	69	60			

5.2.3. Take-off performance

Conditions:

- Maximum weight- Airstrip surface582 kgconcrete

- Rating Takeoff power

Wing flap position (for takeoff)
 15 °

- Lift-off speed IAS = 77 km/h / 49 mph / 42 kts - Airspeed at H = 15 m IAS = 112 km/h / 70 mph / 60 kts

NOTE

For each 10 km/h / 6 mph / 5 kts of head wind velocity the takeoff distance reduces by 8 % and increases by 25% for 10 km/h / 6 mph / 5 kts tail wind velocity .

To receive intermediate values of the data given in the table, interpolation is to be made between the increasing values.

TAKE-OFF RUN AND TAKE-OFF DISTANCES

Pressure altitude 0 [m] STD									
Ambient temperature	°C	-15	-5	+5	+15	+25	+35		
OAT	°F	5	23	41	59	77	99		
Take-off run	m	188	195	203	210	225	240		
Tuke off full	ft	617	640	666	689	738	787		
Take-off distance to	m	403	419	434	450	482	515		
H=15m (50 ft)	ft	1322	1374	1424	1476	1581	1690		
Pressure	e alti	tude 50	00 [m] (1460 ft)	STD	•	•		
Ambient temperature	°C	-18	-8	+2	+12	+22	+32		
OAT	°F	-0.4	17.6	35.6	53.6	71.6	89.6		
Take-off run	m	187	202	217	233	250	267		
Take off full	ft	614	663	712	764	820	876		
Take-off distance to	m	400	432	466	500	536	573		
H=15m (50 ft)	ft	1312	1417	1529	1640	1759	1880		

TAKE-OFF RUN AND TAKE-OFF DISTANCES (continuation)

Pressure altitude 1000 [m] (3281 ft) STD									
Ambient temperature	°C	-21	-11	-1	+9	+19	+29		
OAT	°F	-5.8	12.2	30.2	48.2	66.2	84.2		
Take-off run	m	206	221	241	259	277	297		
Tuke off full	ft	676	725	791	850	910	974		
Take-off distance to	m	442	474	526	554	594	636		
H=15m (50 ft)	ft	1450	1555	1726	1818	1949	2087		
Pressure altitude 1500 [m] (4921 ft) STD									
Ambient temperature	°C	-25	-15	-5	+5	+15	+25		
OAT	°F	-13	5	23	41	59	77		
Take-off run	m	229	248	267	288	309	331		
Tuke off full	ft	751	814	876	945	1014	1086		
Take-off distance to	m	491	537	573	617	662	708		
H=15m (50 ft)	ft	1611	1762	1880	2024	2172	2323		
Pressure	altit	ude 20	00 [m]	(6562 ft)	STD				
Ambient temperature	°C	-28	-18	-8	+2	+12	+22		
OAT	°F	-18.4	-0.4	17.6	35.6	53.6	71.6		
Take-off run	m	254	276	298	321	344	412		
Tanto off full	ft	833	906	978	1053	1129	1352		
Take-off distance to	m	545	591	638	687	738	884		
H=15m (50 ft)	ft	1788	1939	2093	2254	2421	2900		

5.2.4. Landing distance

Conditions:

- Maximum weight 582 kg (1283 lb)

- Airstrip surface concrete

Rating idleWing flap position (for landing) 40°

- Braking maximum

- Approach speed at H=15 m/50' IAS = 100 km/h / 62 mph / 54 kts

NOTE

For each 10 km/h $\,/\,$ 6 mph $\,/\,$ 5 kts of head wind velocity the landing distance reduces by 8 $\,\%\,$ and increases by 24 $\,\%\,$ for each 10 km/h $\,/\,$ 6 mph $\,/\,$ 5 kts of the tail wind velocity.

LANDING DISTANCES

Ambient temperature. OAT Landing distance from 15m (50 ft) Landing run oC oF I f	i t	-15 5 403	ude 0 [n -5 23 419	+5	+15 59	+25	+35
Landing distance from 15m m (50 ft) f	ı t	403	-	41	59	77	
(50 ft) Landing run	t		419			//	99
Landing run		1322		434	450	466	481
Landing run	ı	1522	1375	1424	1476	1529	1578
		179	186	193	200	207	214
Г	t	587	610	633	656	679	702
Pressure a	alt	itude 5	00 m (1	460 ft) S	STD		
Ambient temperature °C	7	-18	-8	+2	+12	+22	+32
OAT °F	7	-0.4	17.6	35.6	53.6	71.6	89.6
Landing distance from 15m	1	423	439	456	472	489	505
(50 ft)	t	1388	1440	1496	1549	1604	1657
Landing runn	1	188	195	203	210	217	224
f	t	617	640	666	689	712	735
Pressure altitude 1000 m (3281 ft) STD							
Ambient temperature °C		-21	-11	-1	+9	+19	+29
OAT °F	7	-5.8	12.2	30.2	48.2	66.2	84.2
Landing distance from 15m	1	444	461	479	496	513	530
(50 ft) f	t	1457	1512	1572	1627	1683	1739
Landing runn	1	197	205	213	220	228	236
f	t	646	673	699	722	748	774
Pressure a	lti	tude 15	500 m (4	1921 ft)	STD		
Ambient temperature °C	7	-25	-15	-5	+5	+15	+25
OAT °F	7	-13	5	23	41	59	77
Landing distance from 15m	1	467	485	503	521	539	557
(50 ft) f	t	1532	1591	1650	1709	1768	1827
Landing run	1	207	215	224	232	240	248
f	t	679	705	735	761	787	814
Pressure a	lti	tude 20	000 m (6	5562 ft)	STD		
Ambient temperature °C		-28	-18	-8	+2	+12	+22
OAT °F	7	-18.4	-0.4	17.6	35.6	53.6	71.6
Landing distance from 15m	1	491	510	529	548	567	586
(50 ft) f	t	1611	1673	1736	1798	1860	1923
Landing runn	1	218	227	235	243	252	260
f	t	715	745	771	797	827	853

5.2.5. Climb performance

Wing flaps retracted (0°)

Conditions:

Maximum weightRating (Power setting)582 kg (1283 lb)(full) nominal power

- Airspeed V_Y =120 km/h / 75 mph / 65 kts IAS

This airspeed is to be reduced by 3 km/h for each 1000 m of altitude (0.57 mph / 0.5 kts for each 1000 ft of altitude).

Wing flaps for takeoff (15°)

Conditions:

- Maximum weight- Rating- Rating- Rominal power

- Airspeed V_Y =110 km/h / 68 mph / 59 kts IAS

This airspeed is to be reduced by 3 km/h for each 1000 m of the altitude (0.57 mph / 0.5 kts for each 1000 ft of the altitude).

CLIMB PERFORMANCE (FLAPS 0)

Ambient temperature OAT		Press	ure altit	ude 0 n	n STD						
Rate of climb	Ambient		-15	-5	+5		+25	+35			
Rate of climb	temperature OAT	°F	5	23	41	59	77	99			
Pressure altitude 500 m (1460 ft) STD	Rate of climb	_m/s									
Ambient temperature OAT							780	754			
Rate of climb											
Rate of climb	Ambient										
Pressure altitude 1000 m (3281 ft) STD	temperature OAT	°F									
Pressure altitude 1000 m (3281 ft) STD Ambient temperature OAT °C -21 -11 -1 +9 +19 +29 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +29 +19 +19 +29 +19 +19 +29 +19 +19 +29 +19 +19 +19 +19 +19 +29 +19 +	Rate of climb	_									
Ambient temperature OAT	D						699	375			
temperature OAT							40	•			
Rate of climb											
Pressure altitude 1500 m (4921 ft) STD	temperature OAT										
Pressure altitude 1500 m (4921 ft) STD Ambient temperature OAT °C -25 -15 -5 +5 +15 +25 Rate of climb m/s 3.03 2.96 2.89 2.82 2.77 2.64 ft/m 596 583 569 555 545 520 Pressure altitude 2000 m (6562 ft) STD Ambient °C -28 -18 -8 +2 +12 +22 temperature OAT °F -18.4 -0.4 17.6 35.6 53.6 71.6 Rate of climb m/s 2.56 2.51 2.45 2.39 2.31 2.23 ft/m 504 494 482 470 455 439 Pressure altitude 2500 m (8202 ft) STD Ambient °C -31 -21 -11 -1 +9 +19 temperature OAT °F -23.8 -5.8 12.2 30.2 48.2 66.2 Rate of climb m/s 2.10	Rate of climb	_									
Ambient temperature OAT							618	598			
temperature OAT											
Rate of climb											
Tit/m 596 583 569 555 545 520 Pressure altitude 2000 m (6562 ft) STD Ambient	temperature OAT	°F	-13								
Pressure altitude 2000 m (6562 ft) STD Ambient temperature OAT °C -28 -18 -8 +2 +12 +22 temperature OAT °F -18.4 -0.4 17.6 35.6 53.6 71.6 Rate of climb m/s 2.56 2.51 2.45 2.39 2.31 2.23 ft/m 504 494 482 470 455 439 Pressure altitude 2500 m (8202 ft) STD Ambient °C -31 -21 -11 -1 +9 +19 temperature OAT °F -23.8 -5.8 12.2 30.2 48.2 66.2 Rate of climb m/s 2.10 2.06 2.01 1.96 1.89 1.83 ft/m 413 406 396 386 372 360 Pressure altitude 3000 m 9843 ft) STD Ambient °C -35 -25 -15 -5 +5 +15 temperature OAT °F	Rate of climb										
Ambient temperature OAT °C -28 -18 -8 +2 +12 +22 Rate of climb m/s 2.56 2.51 2.45 2.39 2.31 2.23 Pressure altitude 2500 m (8202 ft) STD Ambient °C -31 -21 -11 -1 +9 +19 temperature OAT °F -23.8 -5.8 12.2 30.2 48.2 66.2 Rate of climb m/s 2.10 2.06 2.01 1.96 1.89 1.83 ft/m 413 406 396 386 372 360 Pressure altitude 3000 m 9843 ft) STD Ambient °C -35 -25 -15 -5 +5 +15 temperature OAT °F -31 -13 5 23 41 59 Rate of climb m/s 1.05 1.62 1.58 1.54 1.49 1.44 ft/m 207 319 311 303							545	520			
temperature OAT				_							
Rate of climb											
Tith Source Sou	-	°F									
Pressure altitude 2500 m (8202 ft) STD	Rate of climb	_									
Ambient temperature OAT °C -31 -21 -11 -1 +9 +19 Rate of climb m/s -23.8 -5.8 12.2 30.2 48.2 66.2 Rate of climb m/s 2.10 2.06 2.01 1.96 1.89 1.83 ft/m 413 406 396 386 372 360 Pressure altitude 3000 m 9843 ft) STD Ambient °C -35 -25 -15 -5 +5 +15 temperature OAT °F -31 -13 5 23 41 59 Rate of climb m/s 1.05 1.62 1.58 1.54 1.49 1.44 ft/m 207 319 311 303 293 283 Pressure altitude 3500 m (11483 ft) STD Ambient °C -38 -28 -18 -8 +2 +12 temperature OAT °F -36.4 -18.4 -0.4 17.6	D.						455	439			
temperature OAT °F -23.8 -5.8 12.2 30.2 48.2 66.2 Rate of climb m/s 2.10 2.06 2.01 1.96 1.89 1.83 ft/m 413 406 396 386 372 360 Pressure altitude 3000 m 9843 ft) STD Ambient °C -35 -25 -15 -5 +5 +15 temperature OAT °F -31 -13 5 23 41 59 Rate of climb m/s 1.05 1.62 1.58 1.54 1.49 1.44 ft/m 207 319 311 303 293 283 Pressure altitude 3500 m (11483 ft) STD Ambient °C -38 -28 -18 -8 +2 +12 temperature OAT °F -36.4 -18.4 -0.4 17.6 35.6 53.6 Rate of climb m/s 1.19 1.16 1.14 <td< td=""><td colspan="11"></td></td<>											
Rate of climb											
Tith 413 406 396 386 372 360		_									
Pressure altitude 3000 m 9843 ft) STD	Rate of climb										
Ambient temperature OAT	Drage						372	360			
temperature OAT °F -31 -13 5 23 41 59 Rate of climb m/s 1.05 1.62 1.58 1.54 1.49 1.44 ft/m 207 319 311 303 293 283 Pressure altitude 3500 m (11483 ft) STD Ambient °C -38 -28 -18 -8 +2 +12 temperature OAT °F -36.4 -18.4 -0.4 17.6 35.6 53.6 Rate of climb m/s 1.19 1.16 1.14 1.11 1.07 1.04							. 5	. 15			
Rate of climb m/s 1.05 1.62 1.58 1.54 1.49 1.44 ft/m 207 319 311 303 293 283 Pressure altitude 3500 m (11483 ft) STD Ambient °C -38 -28 -18 -8 +2 +12 temperature OAT °F -36.4 -18.4 -0.4 17.6 35.6 53.6 Rate of climb m/s 1.19 1.16 1.14 1.11 1.07 1.04											
ft/m 207 319 311 303 293 283 Pressure altitude 3500 m (11483 ft) STD Ambient temperature OAT °C -38 -28 -18 -8 +2 +12 temperature OAT °F -36.4 -18.4 -0.4 17.6 35.6 53.6 Rate of climb m/s 1.19 1.16 1.14 1.11 1.07 1.04	-	_				-					
Pressure altitude 3500 m (11483 ft) STD	Rate of climb										
Ambient temperature OAT	Pressi						<u> </u>	203			
temperature OAT							+2	+12			
Rate of climb m/s 1.19 1.16 1.14 1.11 1.07 1.04		°F									
		m/s	1.19	1.16	1.14	1.11	1.07	1.04			
10111 23T 220 22T 210 211 203	rate of citilo	ft/m	234	228	224	218	211	205			

CLIMB PERFORMANCE (FLAPS 15)

	Press	ure altit	ude 0 n	n STD					
Ambient temperature	°C	-15	-5	+5	+15	+25	+35		
OAT		5	23	41	59	77	99		
Rate of climb	m/s	3,86	3,78	3,69	3,60	3,48	3,37		
	ft/m	760	744	726	707	685	663		
Press	ure alt	itude 5	00 m (1	460 ft)	STD				
Ambient temperature	°C	-18	-8	+2	+12	+22	+32		
OAT	°F	-0.4	17.6	35.6	53.6	71.6	89.6		
Rate of climb	m/s	3,42	3,35	3,27	3,19	3,08	2,98		
	ft/m	673	659	644	630	606	587		
Pressu	ıre alti	tude 10	000 m (3	3281 ft)	STD				
Ambient temperature	°C	-21	-11	-1	+9	+19	+29		
OAT	°F	-5.8	12.2	30.2	48.2	66.2	84.2		
Rate of climb	m/s	2,98	2,92	2,85	2,78	2,69	2,60		
	ft/m	587	575	516	547	530	512		
Pressu	ıre alti	tude 15	500 m (4	4921 ft)	STD				
Ambient temperature	°C	-25	-15	-5	+5	+15	+25		
OAT	°F	-13	5	23	41	59	77		
Rate of climb	m/s	2,54	2,49	2,43	2,37	2,29	2,22		
	ft/m	500	490	478	467	451	437		
Pressure altitude 2000 m (6562 ft) STD									
Ambient temperature	°C	-28	-18	-8	+2	+12	+22		
OAT	°F	-18.4	-0.4	17.6	35.6	53.6	71.6		
	m/s	2,10	2,06	2,01	1,96	1,89	1,83		
	ft/m	413	406	356	386	372	360		
Pressure altitude 2500 m (8202 ft) STD									
Ambient temperature	°C	-31	-21	-11	-1	+9	+19		
OAT	°F	-23.8	-5.8	12.2	30.2	48.2	66.2		
Rate of climb	m/s	1,66	1,63	1,59	1,55	1,50	1,45		
	ft/m	327	321	313	305	295	285		
Pressi	ure alt	itude 30	000 m 9	843 ft)	STD				
Ambient temperature	°C	-35	-25	-15	-5	+5	+15		
OAT	°F	-31	-13	5	23	41	59		
Rate of climb	m/s	1,23	1,21	1,18	1,15	1,11	1,08		
	ft/m	242	238	232	226	219	213		

5.3. Supplementary information

5.3.1. Cruise

Airspeed, range and endurance

Conditions:

- Maximum weight 582 kg (1283 lb)

- Wing flaps retracted

- Automotive gasoline, unleaded RON 95

- Consumable fuel: 65 litres / 17.17 US GAL

NOTE

Range and endurance data given in the table relate to using of all of the fuel at the given altitude. Taxiing, take-off and climb are not considered in this calculation.

						Pressu	re altit	nde H=	Pressure altitude H=300 m (984 ft) STD	984 ft)	STD				
Fnoine	8			1	Airspeed	P			8	Ţ	Fire	The second second	Consum	Consumable fuel 65L	
peads		IAS			CAS			TAS		consu	consumption	Endur		Range	
RPM	km/h	uduu	kts	km/h	uph	kts	km/h	uph	kts	Νh	US	ч	km	miles	N
4200	135	83.9	72.9	136	84.5	73.4	140	87.0	75.6	14.0	3.70	4:38	059	404	35
4400	150	93.2	81.0	150	93.2	81.0	154	95.7	83.2	15.3	4.04	4:14	654	407	35
4600	164	101.9	88.6	162	100.6	87.5	167	103.7	90.2	168	4.44	3:52	949	401	34
4800	175	108.7	94.5	172	106.8	92.9	177	109.9	926	18.0	4.76	3:36	639	397	34
2000	186	115.5	100.1	182	113.0	98.3	187	116.1	101.0	9.61	5.18	3:18	620	385	33
5200	200	124.2	108.0	195	121.1	105.3	200	124.2	108.0	21.6	5.71	3:00	602	374	32
5400	210	130.4	113.4	204	126.7	110.2	210	130.4	113.4	24.0	6.34	2:42	569	353	30
5500	212	131.7	114.5	206	127.9	127.9 111.2	212	131.7	114.5	25.0	09'9	2:36	551	343	29
					-	ressur	ealtitu	de H=2	Pressure altitude H=2000 m (6562 ft) STD	6562 ft	STD (
Fnoine				1	Airspeed	T				ū	Firel	3	Consum	Consumable fuel 65L	
speed		IAS			CAS			TAS		consu	consumption	Endur		Range	
RPM	km/h	uduu	kts	km/h	чdш	kts	km⁄h	mph	kts	ľh	US	ч	km	miles	N
4200	118	73.3	63.7	121	75.2	65.3	135	83.9	72.9	13.5	3.57	4:49	652	405	35
4400	127	78.9	9.89	129	80.1	69.7	144	89.4	77.8	14.3	3.78	4:33	655	407	35
4600	139	86.3	75.1	140	0.78	75.6	156	6.96	84.2	15.2	4.02	4:16	199	415	36
4800	158	1.86	85.3	157	97.5	84.8	175	108.7	94.5	17.5	4.62	3:42	650	404	35
2000	170	105.6	8116	168	104.3	7.06	188	116.8	101.5	19.4	5.12	3:21	069	391	34
5200	178	110.6	96.1	175	108.7	94.5	195	121.1	105.3	20.6	5.44	3:09	615	382	33
5400	194	120.5	120.5 104.6	190	118.0	118.0 102.6	212	131.7	131.7 114.5	24.6	059	2:38	999	348	30

(14)

5.3.2. Climb after balked landing

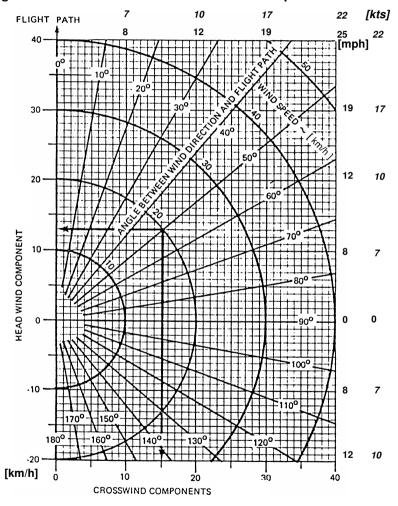
It is possible to retract the flaps by hand in not more than 2 sec., without loss of altitude, or abrupt change in angle of attack, or special piloting skill. After retracting the wing flaps, the performance of the aeroplane is as given under 5.2.5. Climb performance

5.3.3. Take-off and landing on grass airstrips

It is possible to perform take-off or landing from grass strips with grass not longer than 15 cm (a bit less than a half of the wheel diameter). On short cut grass, the takeoff run increases about 10 %.

5.3.4. Affect of rain or insect remains on aeroplane performance and handling

No observable affect of rain or sediment of insects on the aeroplane performance or handling has been noted.


5.3.5. Demonstrated range of operational temperatures

During the test flights, which have been performed in ambient temperatures from -15 °C to +30 °C, it has been proven that all systems operate correctly and the temperature of the components of the power plant, as well as the engine fluids, remain within the limits established by the manufacturer of the engine.

5.3.6. Demonstrated crosswind at take-off and landing

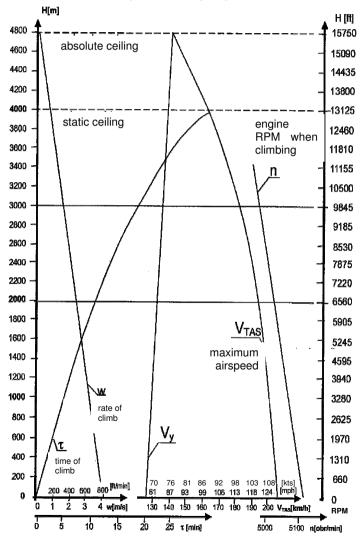

Correct aeroplane handling characteristics have been demonstrated during takeoff and landing with the crosswind velocity up to 6 m/sec. (21.6 km/h / 13.4 mph / 11.7 knots).

Diagram for determination of the crosswind component

5.3.7. Combined diagram of aeroplane characteristics

GT-2/173/VRR-FW101SRTC Propeller Maximum aeroplane weight 582 kg Maximum power. wing flaps retracted

5.3.8. Noise

The outside noise level of the AT-3 R100 aeroplane, determined in accordance with the procedure in Chapter 10 Annex 16 ICAO is: $66.6 \pm 0.35 \, dB \, (A)$, while the permissible level is $70.32 \, dB \, (A)$.

Section 6

WEIGHT AND BALANCE

	Page
6.1. Introduction	6-2
6.2. Weight and Balance Calculation	6-2
6.3. Weight and Balance Schedule	6-9
6.4. AT-3 R100 Equipment List	6-10

6.1. Introduction

This Section contains the limitations of the useful load, within which the aeroplane may be operated safely.

The procedure for weighing aeroplane is contained in the Maintenance Manual of the AT-3 R100 aeroplane. Any change in the weight of the empty aeroplane, e.g. after new equipment is fitted, repairs or repainting, will necessitate re-calculation of the table 6.3 "Weight and Balance Schedule" of this manual. The equipment installed in this aeroplane is shown in the List of Equipment in Section 6-4.

6.2. Weight and Balance Calculation

In order to calculate the weight and centre of gravity of the aeroplane, one of the following procedures should be followed.

WARNING

When calculating the aircraft weight and balance, the planned fuel consumption should be taken into consideration.

A decrease in fuel level will result in the Centre of the Gravity moving aft.

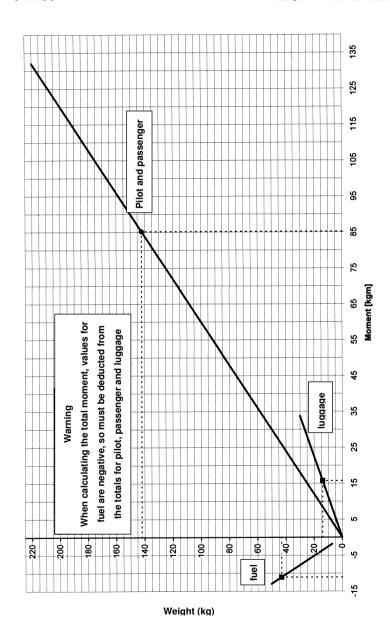
Graphical method

From the table 6.3:" Weight and Balance schedule" the actual weight and moment of the empty aeroplane should be read off. If on the rear wall of the cockpit is installed the collapsible tow bar to the weight of empty aeroplane +1,5 kg should be added and moment +2,6 kgm should be increased.

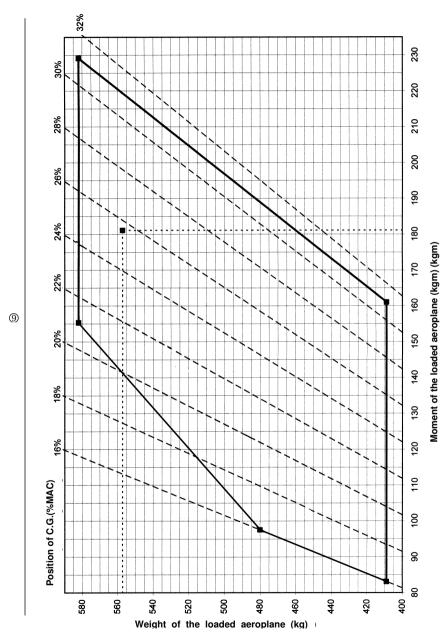
9

WARNING

The empty weight of the aeroplane is the weight of the aeroplane with the unusable amount of fuel, engine oil, cooling liquid and with the optional equipment according to 6.4


For known weights of fuel, passenger, pilot and luggage read off the values of the moments from the chart 1 "values of the moments". Weights and moments should be calculated according to the following table:

	Aircraft I	Loading I	Example	Your	Aircraft lo	ading
	Weight	Momen	t [kGm]	Weight	Momen	t [kGm]
	[kg]	(+)	(-)	[kg]	(+)	(-)
		(1)			(1)	
Empty aeroplane	358	91.3				
fuel (0.72 kg/l)	43.2	\times	-11,1			
pilot + passenger	142	85.2	\times			
Luggage	14	15.8				
Moment totals		192.3	-11.1			
Total weight and	557.2	18	1.2			
moment						


WARNING

The total weight of the aeroplane must not be less than 409 kg or greater than 582 kg

Using Chart: 2 -"Aircraft loading" it can be verified whether the Centre of Gravity is inside the acceptable marked range (envelope) for the specific maximum weight and moment. If not, the aircraft loading should be changed. The Centre of the Gravity should be inside the marked range during the whole flight.

Page 6-6

AEROPLANE FLIGHT MANUAL

JULY, 2010

Calculation Method

From the table 6.3: "Weight and Balance Schedule" the actual weight and moment of the empty aeroplane should be read off. If on the rear wall of the cockpit is installed the collapsible tow bar to the weight of empty aeroplane +1,5 kg should be added and moment +2,6 kgm should be increased.

9

Values of the moments should be calculated on the basis of the following formula, multiplying the weight by the appropriate arm:

Moment of the pilot and passenger: $\mathbf{M}_{crew}[kgm] = 0.60_{(arm)} \times \mathbf{Q}_{crew}$

Moment of the luggage: $M_{lugg}[kgm] = 1.125_{(arm)} \times Q_{lugg}$

Moment of the fuel $M_{fuel}[kgm] = -0.257_{(arm)} \times Q_{fuel}$

where: Q = weight [kg]

When calculating the Centre of Gravity, the changes in the weight of oil and cooling liquid can be ignored since the difference of 0.5l (0.45kg) between their max and minimum levels is insignificant.

Weights and moments should be calculated according to the following table:

	Airc	raft Load	ling Exar	nple	Yo	our Aircra	aft Load	ing
	Weight	Arm	Momen	t [kgm]	Weight	Arm	Momen	nt [kgm]
	[kg]	[m]			[kg]	[m]		
	. 01		(+)	(-)			(+)	(-)
Empty aircraft	358		91.3					
Fuel 0.72 kg/l)	43.2	-0.257	\times	-11.1		-0.257	\times	
Pilot +Passenger	142	0.6	85.2			0.6		$\overline{}$
Luggage	14	1.125	15.8			1.125		
Subtotals	557.2		192.3	-11.1				
Total weight,	557.2	0.325*	18	1.2		·		

^{*} total moment divided by total weight = total arm (see below)

arm & moment

Calculate the arm of the Centre of Gravity of the aeroplane (X_{CG}) :

$$X_{CG} = \frac{M}{Q}$$
 [m]

Where:

M – total moment of the aeroplane

Q - total weight of the aeroplane

WARNING

The Arm of the Centre of Gravity (X_{CG}) is measured

rearwards from the leading edge of the wing.

The value X_{CG} must not be less than 0.203 m or greater than 0.393 m

calculate the centre of the gravity in % mean aerodynamic cord

$$\overline{\chi}_{CG} = \frac{\chi_{CG}}{1.27} \times 100\%$$

WARNING

The value X_{CG} must not be less than

16% MAC or greater than 31% MAC

(9)

6.3 Weight and Balance schedule

				Mp	[kgm]						
				g	[kg]						
				MOM.	[kgm]	t					the aeroplane
	OLUMNS)		REMOVED (-)	ARM.	<u>E</u>	equipment lis					nd moment of
	STTWOC	F WEIGHT		3	[kg]	rding to the					of weight a
	OPLANE (LA	CHANGE OF WEIGHT		MOM.	[kgm]	installed acco					cting changes
z	EMPTY AEF	EMPTY AERC	ADDED (+)	ARM	<u>[u</u>	he equipment					difications effe
CALL SIGN	INT OF THE			3	[kg]	plane with t					pment mod
WEIGHT AND MOMI	WEIGHT AND MOMENT OF THE EMPTY AEROPLANE (LAST TWO COLUMNS)		DESCRIPTION OF THE MODIFICARTION			New factory built aeroplane with the equipment installed according to the equipment list					Chronology of the construction and equipment modifications effecting changes of weight and moment of the aeroplane
NUMBER			SIGNATURE								Chronc
SERIAL NUMBER			DATE								

6.4 AT-3 R100 Equipment list

	STANDARI	EQUIPMENT
No.	Name:	
1	Airspee	d indicator
2	Alt	imeter
3	Vertical sp	peed indicator
4	Co	mpass
5	Fuel level ind	cator Variant
6	Engine monitoring instruments	Electronic tachometer Oil temp. indicator Oil pressure indicator Fuel pressure ind. OAT indicator EGT indicator Cylinder head temp. ind.
7	Standard electric system	volt ammeter battery

4

NOTE ADDITIONAL EQUIPMENT IS TO BE INSTALLED BY THE AEROPLANE MANUFACTURER

WEIGHT OF THE INSTALLED EQUIPMENT IS INCLUDED IN THE EMPTY WEIGHT OF THE AEROPLANE

"AERO" Sp. z o.o. AT-3 R100

SECTION 6 WEIGHT AND BALANCE

	OPTIONAL EQ		
No.	Type of equipment	Model	Installed
1	Turn coordinator	1394T100-7Z	
2	Artificial horizon	GH-112	
3	Artificial horizon R.C. Allen	RCA-26AK-2	
4	Directional Gyro Indicator R.C. Allen	RCA15AK-1	
5	Clock DAVTRON		
6	Clock	ACzS-1	
7	Clock Mitchell	D1-312-5038	
8	Radio-transceiver	KY-97A	
9	Radio-transceiver	KX 125	
10	VOR indicator	KI 208	
11	Intercom	SPA-400	
12	Transponder TRT		
13	Transponder	KT-76A	
14	Transponder	TT31	
15	Encoder	A-30	
16	GPS Bendix-King	Skymap IIIC	
17	Engine run counter	VDO MALAYSIA	
18	Stall warning System	ACI T1	
19	Fuel flow meter	TL-2512	
20	Fuel flow meter	TL-2524	
21	Cabin air intake	AT3.77.400.0	
22	Cabin air outlet	AT3.77.450.0	
23	Extinguisher	AT3.75.000.0	
24	Wheel fairings	AT3.45	
25	Parking brake	AT3.47.100.0	
26	Parking brake	AT3.47.130.0	
27	Trim an balancing tab	AT3.33.070.0	
28	ELPROP propeller	ELPROP 3-1-1P	
29	Alternator	AT3.61.390.0	
30	Strobe lights	AT3.61.400.0	
31	Landing and taxing lights	AT3.61.410.0	
32	Oil cooler flap control system	AT3.54.400.0	

⁺ Equipment installed

o Equipment not installed

SECTION 6 WEIGHT AND BALANCE

	OPTIONAL EQI	UIPMENT	
No.	Type of equipment	Model	Installed
33	Anti-collision strobe WHELEN	70509	
34	Position lights	AT3.61.440.0	
35	GPS-VHF Antena	AT3.62.400.0	
36	Rotated propeller axis	AT3.52.500.0	
37	ELT KANNAD	406 AF-COMPACT	
38	Fuel system with additional fuel tank	AT3.53.500.0	
39	"Fuel pump on" light	AT3.61.630.0	
40	"Canopy open" light	AT3.25.250.0	
41	Instruments lighting	AT3.73.200.0	
42	Instruments lighting	AT3.73.300.0	
43	GARMIN System	G500	
44	Engine Monitoring System	MVP-50P	
45	Audio panel	GMA 340	
46	COMM/NAV/GPS	GNS 430W	
47	Radio-transceiver	SL 30	
48	VOR/ILS Indicator	MD200-306	
49	Transponder	GTX 328	
50	FLARM	ECW100	
51	Heated Pitot Tube	AT3.71.200.0	
52	Artificial horizon	4200-10/11	
53	Pitot and static pressure system Variant II	AT3.71.300.0	
54	Landing and taxing LED lights	AT3.61.650.0	
55	GPS GARMIN	AERA 500	
56	Encoder	SSD120	
57	GPS GARMIN	695	
58	ASPEN	EFD1000	
59	DYNON	EFIS-D6	
60	P-CAS Zaon	MRX	
61	Pitot and static pressure system Variant III	AT3.71.250.0	
62	Radio-transceiver	SL 40	
63	Artificial horizon	RCA 2600	
64	Flight Hour Meter Winter Quartz	1510 FZM	

⁽⁴⁾

⁺ Equipment installed

o Equipment not installed

"AERO" Sp. z o.o. AT-3 R100

SECTION 6 WEIGHT AND BALANCE

	OPTIONAL EQ	UIPMENT	
No.	Type of equipment	Model	Installed
65	Radio-transceiver	GTR 225A	
66	Radio-transceiver	GTN 650	
67	Inertial seat belts	AT3.76.050.0	
68	Control of the flap on the air inlet to the coolers	AT3.54.450.0	
69	Control of the rudder	AT3.28.000.0	
70	Adaptation to assembly of a smoke installation. Electrical installation, variant	AT3.75.400.0	
71	Radio-transceiver	GNC 255A	
72	VOR/ILS indicator	GI 106B	
73	GPS GARMIN	AERA 660	
74	ROTAX engine	912iSc	
75	Engine controller	EMU 912iS evo	
76	75 liters fuel tank	AT3.53.240.0	
77	Instruments lighting	AT3.81.120.0	
78	Landing gear and brake system	BERINGER	
79	Lights in the lower engine cover	AT3.81.250.0	
80	Position and strobe lights	ORION 600	
81	GARMIN System	G5	
82	Radio-transceiver	TRIG TY91	
83	Transponder	TRIG TT21	
84	GPS GARMIN	AERA 795	
85	FLARM	LXNAV FlarmMouse	
86	Wing fuel tanks	AT3.11.200.1/2	
87	GARMIN System	G500 TXi	

⁺ Equipment installedo Equipment not installed

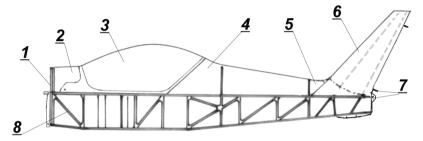
THIS PAGE IS LEFT INTENTIONALLY BLANK

Section 7

DESCRIPTION OF THE AEROPLANE AND ITS EQUIPMENT

Pa	age
7.1. Introduction	
7.2. Airframe	
7.2.1. Fuselage7-2	
7.2.2. Wings	
7.2.3. Slab tail	
7.2.4. Fin and rudder	
7.3. Flight control	
7.3.1. Control of the ailerons	
7.3.2. Control of the wing flaps7-7	
7.3.3. Control of the elevator7-8	
7.3.4. Control of the trim & balancing tab7-9	
7.3.5. Control of the rudder	
7.4. Instrument panel	
7.5. Landing gear system7-15	
7.5.1. Brake system	
7.5.2. Parking brake7-17	
7.6. Seats and seat belts	
7.7. Luggage compartment7-21	
7.8. Canopy	
7.9. Power unit	
7.9.1. Engine7-23	
7.9.2. Propeller7-23	
7.10. Fuel system	
7.11. Pitot and static pressure systems	
7.12. Electric system	
7.13. Aeroplane equipment7-29	
7.13.1. Ventilation and cabin heating7-29	
7.13.2. Carburettor heating system7-30	
7.13.3. Air intake covers	

9

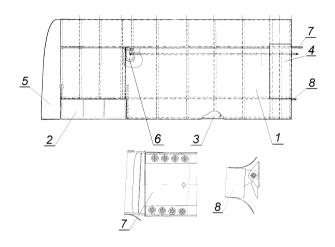

7.1. Introduction

This Section contains a description of the aeroplane and of its equipment.

7.2. Airframe

7.2.1. Fuselage

The fuselage, made of duralumin sheet, has a rectangular section, open in the area of the cabin. In the rear the fuselage passes fluently into the fin, being an integral part. The sections between canopy and fuselage, as well as those between fuselage and fin are made of epoxy-fibreglass composite.

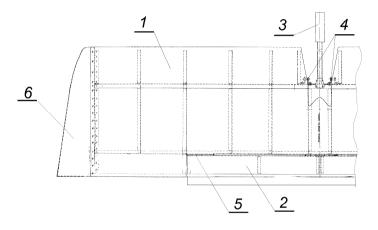


Fuselage

- 1. Fire wall
- 2. Upper fuel tank cover
- 3. Canopy
- 4. Canopy-fuselage fairing made of epoxy-fibreglass
- 5. Fuselage-fin fairing made of epoxy-fibreglass
- 6. Fin
- 7. Ferules of the rudder and the elevator
- 8. Fuselage frame

7.2.2. Wings

The wings are made of aluminium and are connected to the fuselage by means of the main and of the rear spars. The ailerons and the wing flaps are of similar design are connected to the wing by means of flat hinges. Wing tips made of of epoxy-fibreglass.

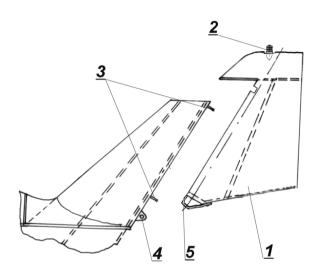


Wing

- 1. Wing frame
- 2. Aileron
- 3. Flap
- 4. Wing-walk surface
- 5. Wing tip
- 6. Inspection hatch
- 7. Main spar
- 8. Rear spar

7.2.3. Slab tail

The tail plane is a slab tail design with a structure similar to the wing, mass balanced, hinged at two points. The trim & balancing tab are contained within the contour of the tail plane.



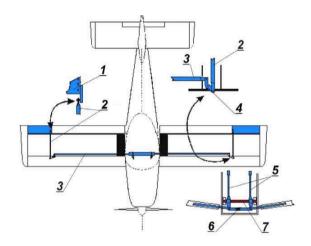
Slab tail

- 1. Structure of the slab tail.
- 2. Trim and balancing tab
- 3. Balancing weight
- 4. Slab tail fittings
- 5. Trim and balancing tab flat hinges
- 6. epoxy-fibreglass tips

7. 7.2.4. Fin and rudder

The vertical tail unit consists of fin and rudder. The fin is an integral part of fuselage structure.

Fin and rudder


- 1. Rudder
- 2. Anti-collision strobe
- 3. Rudder mountings
- 4. Slab tail fittings
- 5. Lower rudder fitting

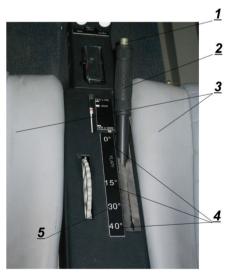
7.3. Flight control

This section contains a description of the control mechanisms of the wing flaps, the ailerons, the elevator, the trim & balancing tab and of the rudder.

7.3.1. Control of the ailerons

The ailerons are located at the trailing edge of the outboard wing part, between the wing flaps and the wingtips. The scheme of the control mechanism of the ailerons is shown below.

Control of the ailerons


- 1. Aileron
- 2. Push rods
- 3. Push rods
- 4. Angle lever
- 5. Control sticks
- 6. Push rods
- 7. Torsion tube

7.3.2 Control of the wing flaps

The wing flaps which are of crocodile type (split flaps) are located below the trailing edge of the wing, between the fuselage and the ailerons. The wing flap control lever (see the illustration below) is located in the cabin, on the console, between the seats. This lever is fitted with a knob, which is to release the flap-retaining pin and enables the flap to be set in either of its three positions. In the extreme forward position of the lever the flap is set to $\delta_{\rm K}$ = 0 °.

In the middle position of the lever the flap is set to δ_K = 15 ° and in the extreme rear, the setting is δK = 40 °. The aircraft can be equipped with optional 30° flaps setting (see Supplement No 55).

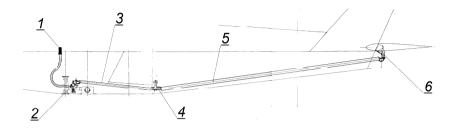
The wing flap control lever transmits its movement to the flaps via push rod, torsion tube and the two pins.

Flap control cabin elements

- 1. Releasing knob
- 2. Wing flap control lever
- 3. Seats

- 4. Marking of the flap setting
- 5. Optional 30° flaps setting

NOVEMBER, 2012

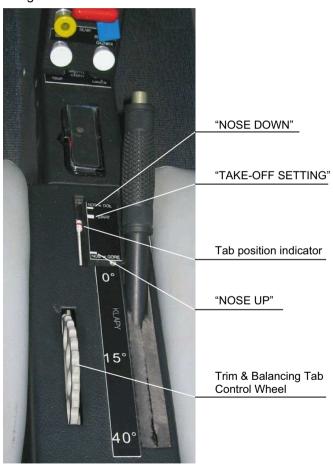

Page 7-7

(14)

(14)

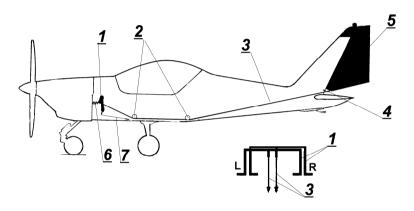
7.3.3. Control of the elevator

The slab tail elevator is fixed to the spar of the fin. The scheme of the elevator control is shown in the illustration below.


Control of the elevator

- 1. Control stick
- 2. Torsion tube
- 3. Short push rod
- 4. Connecting lever
- 5. Long push rod
- 6. Slab tail arm

7.3.4. Control of the trim/balancing tab

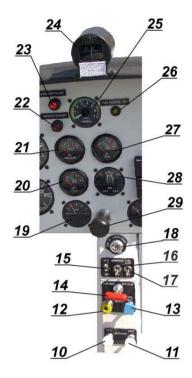

The trim & balancing tab is fixed to the trailing edge of the slab tail elevator is driven by torsion shaft, self locking screw gear and assembly of levers and pushrods .

The illustration below shows the control wheel of the tab and the tab setting indicator.

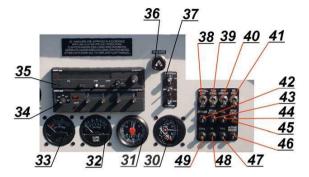
7.3.5. Rudder Control

The rudder is fixed to the fin. The illustration below shows the schematic of the rudder control.

Schematic showing the set-up of the pedals controlling the rudder


- 1. Rudder pedals
- 2. Cable pulley
- 3. Cables
- 4. Rudder lever
- 5. Rudder
- 6. Tension springs
- 7. Discharge cables

7.4. Instrument panel



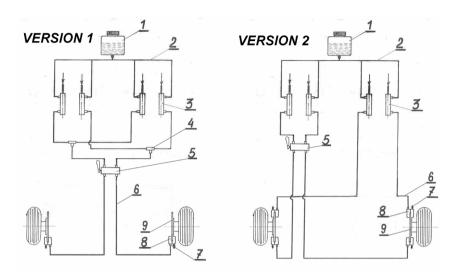
- 1- Port throttle lever
- 2- Clock *
- 3- Airspeed indicator
- 4- Stall warning light *
- 5- Artificial horizon *
- 6- Altimeter
- 7- Vertical speed indicator
- 8- Directional gyro *
- 9- Turn co-ordinator *
- 10- Cabin heating control knob
- 11- Vent control knob
- 12- Choke
- 13- Carburettor heating
- 14- Fuel cut-off valve
- 15- Battery switch
- 16- Generator switch
- 17- Fuel pump switch
- 18- Ignition switch

- 19-Fuel quantity indicator
- 20-Cylinder head temperature indicator (CHT)
- 21-Oil pressure indicator
- 22-"Starter engaged" light
- 23-"Generator failure" light
- 24- Compass
- 25- Tachometer
- 26- "Fuel reserve" light
- 27- Oil temperature indicator
- 28-Exhaust Gas temperature indicator (EGT)
- 29-Throttle lever

- 30-Volt-Ammeter
- 31-Hour meter *
- 32- Carburettor air temperature indicator
- 33- Fuel pressure indicator
- 34- Transponder *
- 35- Radio-transceiver *
- 36- 12V- DC Supply
- 37- Intercom *
- 38- Anti-collision strobe light switch
- 39- Turn co-ordinator switch
- 40- Artificial horizon switch
- 41- Directional gyro switch *
- 42- Starter circuit breaker
- 43- Engine instruments circuit breaker
- 44-Fuel quantity meter circuit breaker
- 45- 12V-DC-supply circuit breaker
- 46- "Encoder" circuit breaker *
- 47- Transponder circuit breaker *
- 48- Intercom circuit breaker *
- 49- Radio-transceiver- circuit breaker *
 - * optional equipment

7.5. Landing gear system

The aircraft has a three-wheel, fixed landing gear, with nose wheel. The main landing gear is of a flat spring design. The nose wheel is fitted with a rubber shock absorber


7.5.1. Braking system

The aeroplane is fitted with hydraulic disc brakes. The system consists of two hydraulic circuits that activate independent callipers of left and right wheels of the main landing gear. Each of the circuits consists of two brake cylinders [3] located on rudder pedals. In version 1 they are connected via insulating valve [4] and flexible pressure lines with brake callipers [8]. The brake fluid container [1] is located at the highest point of the brake system on the firewall and it supplies each pump independently. Cylinders of the left brake are activated by the left rudder pedals and the right cylinders are activated by the right rudder pedals of both the pilot and the passenger. The insulating valve are located on the firewall in the cabin and prevent the transfer of brake fluid under high pressure from one cylinder to the other instead of the callipers. In version 2 pumps on right rudder pedals activate additional callipers.

In both variations it is possible to install a parking brake valve.

9

(9)

Diagram of the braking system

- 1 Brake fluid container
- 2 Feeding line
- 3 Brake cylinder
- 4 Insulating valve
- 5 Parking brake valve (option)
- 6 Brake pressure line
- 7 Bleeding valve
- 8 Brake calliper
- 9 Brake disk

7.5.2. Parking Brake

The parking brake valve is installed in between the seats tunnel and the parking brake lever is accessible from the left seat.

CAUTION

ENGINE STARTING WITH PARKING BRAKE ON IS PROHIBITED

NOTE

IN ORDER TO APPLY THE PARKING BRAKE IT IS NECESSARY:

- FROM THE LEFT SEAT PUSH ON TOE BRAKES
- ROTATE PARKING VALVE LEVER TO POSITION "ON"

NOTE

DUE TO POSSIBLE DECREASE IN PRESSURE IN THE BRAKE LINES OVER A LONGER PERIOD OF PARKING TIME IT IS RECOMMENDED TO FURTHER SECURE THE AIRPLANE AS A PREVENTIVE MEASURE FROM ROLLING.

The parking valve can occur in two types. Type of installed parking brake is specified in Section 6 of this manual, see table "Optional equipment".

For parking brake variant 2 the valve is installed in break installation of left seat.

For role of the parking brake and the flight controls securing can be used the collapsible tow bar installed on control stick and rudder control pedals. For collapsible tow bar using description see Section 8.4.2 "Parking".

Parking Brake AT3.47.100.0

Valve of parking brake AT3.47.100.0 is non-return valve. After set this valve lever "on" is possible to increase pressure inside the breaking system lines and brake the airplane.

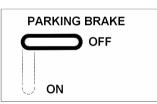
Parking brake AT3.47.100.0 in "ON" position

1. Valve lever,

(9)

- 2. Parking brake placard,
- 3. Information placard,

Parking Brake AT3.47.130.0


Valve of parking brake AT3.47.130.0 is cut-off valve. After set this valve lever "on" is not possible to increase pressure inside the breaking system lines, brake cylinders are cut off from callipers. Set the valve lever to position "on" with low level pressure inside the braking lines make impossible to brake the airplane.

CAUTION

DO NOT APPLY PARKING BRAKE BEFORE PUSH ON BRAKE LEVERS LEFT SEAT BRAKES DO NOT OPERATE WHEN PARKING BRAKE IS ON

In airplane with brake system variant 2 right seat toe brakes operate independently from parking brake lever position.

Parking brake AT3.47.130.0 in "ON" position

- 1. Valve lever.
- 2. Parking brake placard,
- 3. Information placard,

7.6. Seats, seat belts and harness

The seat position is permanently fixed (not adjustable). The illustration below shows the installation of the seats. Each seat is fitted with adjustable safety belts.

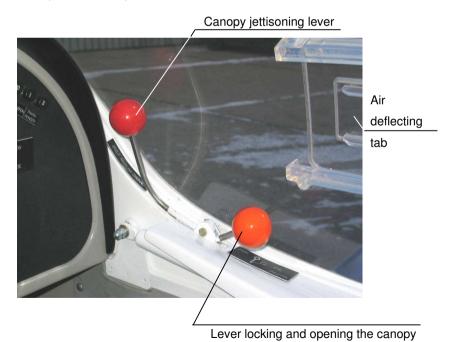
7.7. Luggage compartment

The luggage compartment is located behind the seats and consists of two containers (see illustration).

The containers are fitted with lids made of metal, locked by latches. Pressing the latch releases it and enables the lid to be opened. The luggage compartment allows for luggage of 30 kg total weight; 20 kg in the port container and 10 kg in the starboard one.

Lid of the luggage compartment

The port and the starboard luggage containers


Extinguisher

CAUTION

IT IS PROHIBITED TO CARRY INFLAMMABLE, CORROSIVE, EXPLOSIVE, RADIOACTIVE AND OTHER MATERIALS IN THE LUGGAGE COMPARTMENT, WHICH ARE HARMFUL FOR HUMAN HEALTH OR LIFE.

7.8. Canopy

The canopy consists of an epoxy fibreglass composite frame and of profiled acrylic sheet. The canopy can be moved forward, rotating around an axis located in front of the cabin. After entering the cabin the canopy should be pulled on the handle and lowered, until it rests on the fuselage sidewall edges, and then locked with the levers with orange knobs. Sliding venting tabs are installed on both sides of the canopy. Jettisoning of the canopy is achieved by pulling the lever with the red knob and pushing the canopy upwards. The locking and the jettisoning levers are arranged in the front part of the canopy on both sides, one of each, on each side.

7.9. Power unit

7.9.1. Engine

Rotax 912S2 or 912S4 engine

- Four-stroke, opposed, four cylinder engine
- Cylinder heads cooled with fluid, cylinders cooled with air
- Pressure lubrication
- Dual magneto ignition
- Propeller driven via reduction gear
- Electric starter
- Generator

Two interconnected throttle levers, located on the instrument panel, are used to control the engine.

7.9.2. Propeller

Wooden, fixed pitch, two-bladed GT-2/173/VRR-FW101SRTC, propeller, of 1.73 m (5' 8") diameter.

The propeller rotates in a clockwise direction (when viewed from the cockpit)

7.10. Fuel system

The fuel is contained in the fuel tank, which is located between the instrument panel and the firewall. The fuel tank, made of composite, is contained in a sack, made of fabric resistant to smoke and to fuel.

There are drains installed in the sack, to drain any spilled fuel out of the aeroplane. The fuel tank is fitted with a filler which is drained. A measuring stick is attached to the filler cap. The fuel quantity is measured by the fuel level sensor. The signal from this sensor is transmitted to the fuel quantity indicator and to the reserve fuel sensor. The reserve fuel signal lamp starts to light, when the fuel tank contains 10 litres of consumable fuel.

The fuel is filtered by the coarse filter located on the fuel tank outlet, by the filter in the electric driven emergency fuel pump and by the fine filter, located behind the engine driven pump.

The fuel shut-off valve is located under the fuel tank, behind the firewall, and is operated from the cabin.

The engine driven pump feeds the fuel under pressure via a five-way connector to the carburettors and to the fuel pressure sensor. Surplus fuel is drained back to the fuel tank.

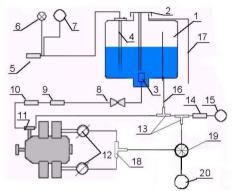
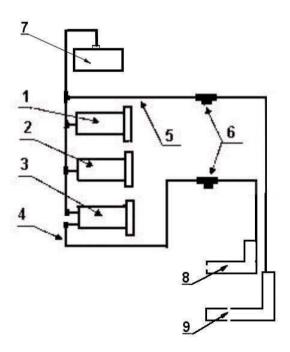
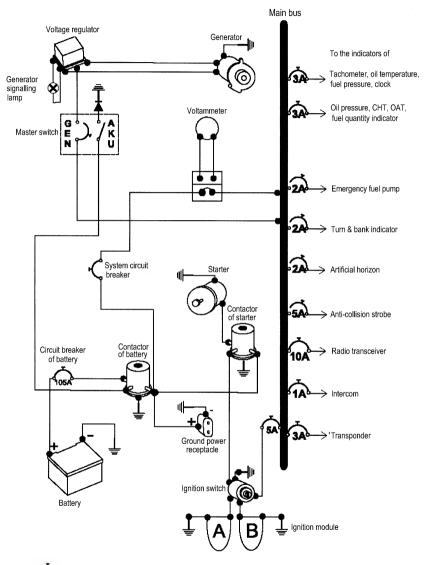



Diagram of the fuel system

- 1. Fuel tank
- 2. Filler cap with the measuring stick
- Coarse fuel filter
- 4. Fuel level sensor
- Reserve fuel sensor
- 6. Reserve fuel signalling lamp
- 7. Fuel quantity indicator
- 8. Shut-off valve
- 9. Electrically driven fuel pump
- 10. Fine fuel filter
- 11. Engine driven fuel pump
- 12. Carburettors
- 13. Three-way connectors
- 14. Fuel pressure sensor
- 15. Fuel pressure indicator
- 16. Fuel return line
- 17. Draining line of fuel filler
- 18. Three-way connectors
- 19. Fuel flow-meter sensor (optional)
- 20. Fuel flow-meter indicator (optional)

7.11. Pitot and static pressure systems

The sensors [9] and [8] receive air under pitot and static pressure and transmit it to the airspeed indicator [3], altimeter [2], vertical speed indicator [1] and altitude encoder[7](option) -see the scheme on the illustration. The sensors of pitot and static pressure are fixed under the port wing. Water sediment containers [6] are installed to both the static pressure line [5] and to the pitot pressure line [4]. The sediment containers are located beneath the pilot's seat and are accessible from outside.


7.12. Electrical system

The source of on board electric power is the generator and the battery. It is a 12 Volt system. Automatic circuit breakers located on the instrument panel protect the system. The BATTERY switch switches on the system. The switches BATTERY and GENERATOR perform the task of the system master switch. In case of generator failure, the GENERATOR signalling lamp lights up. In such a case the system is fed from the on board battery.

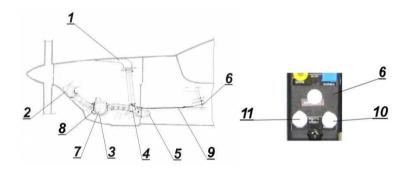
There is also an electrical ground power receptacle installed into the system, being located in front of the wing, on the port wall of the fuselage, in front of the firewall. An electric board socked is installed in the cabin, on the instrument panel. When using the ground power source, the on board battery is automatically switched off. Switching of the electric power receivers in this case is the same as when using the on board battery.

The following options are available:

- Anti-collision strobe
- Navigation lights and the landing light

Automatic circuit breaker (permanently switched on)

Switch with automatic circuit breaker (switched manually)

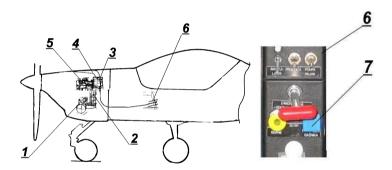

Switch (switched manually)

7.13. Aeroplane equipment

A detailed list of standard aeroplane equipment, as well as of the possible optional equipment is given in the Maintenance Manual of the AT-3 R100 aeroplane. The operational instructions for the optional equipment are given in the section 9 – Supplements.

7.13.1. Cabin ventilation and heating

The cold air ventilation inlet in the lower part of the cabin shares the air intake with the carburettor air inlet connected to the air mixer. The air mixer enables adjustment of the volume and temperature of the cabin ventilating air. The fresh air is ducted from the intake to the heat exchanger located under the muffler and then further to the air mixer. From the mixer the air is ducted to the cabin outlet. The control cables and knobs are located on the middle console.


- 1. Cold air inlet
- 2. Heat exchanger inlet
- 3. Heat exchanger
- 4. Mixer
- Cabin inlet
- 6. Middle console

- 7. Muffler
- 8. Heat exchanger intake optional
- Control cables
- 10. Temperature control knob
- 11. Air volume control knob

7.13.2. Carburettor heating installation

Closing of the air flow from the cold air inlet causes suction of the hot air from the engine compartment through the heat exchanger located above the muffler. The heated air is channelled through the air duct to the filter box, where the air streams are mixed. The cold air stream can be adjusted by the flap controlled by the Bowden cable and knob located on the middle console. The temperature of the carburettor intake air can be read from the gauge on the instrument panel.

To increase of the temperature turn the knob to the left to unlock and pull to the selected position and turn right to lock.

- 1. Heat exchanger
- 2 Duct
- 3. Air filter box
- 4. Air intake
- 5. Carburettors
- Middle console
- 7. Carburettor heating control knob

7.13.3 Air intake covers

In case of airplane operation in low ambient temperature it is recommended that intake air covers are used to reduce the intensity of the cooling effect. Inlet covers are installed in the lower cowling by the means of screws.

NOTE

It is recommended that Air Intake Covers are installed when operating the aircraft in ambient temperature below 12°C/54°F

"AERO" Sp. z o.o. AT-3 R100

THIS PAGE IS LEFT INTENTIONALLY BLANK

Section 8

SERVICING

	Page	
8.1. Introduction	8-2	
8.2. Scheduled aeroplane inspections	8-2	
8.3 Aeroplane repair or modification	8-3	
8.4. Ground servicing	8-3	
8.4.1. Relocating the aeroplane on ground	8-4	
8.4.2. Parking	8-5	
8.4.3. Tying down	8-7	
8.4.4. Lifting	8-8	
8.4.5. Levelling	8-9	
8.5. Cleaning and basic maintenance	.8-10	œ
8.5.1. External painted surfaces	.8-10	
8.5.2. Glass panels	.8-11	
8.5.3. Propeller	.8-12	
8.5.4. Engine	.8-12	
8.5.5. Cabin interior	.8-12	

8.1. Introduction

This Section contains procedures for the correct control of the aeroplane on the ground and servicing, recommended by the aeroplane manufacturer. It also contains some requirements concerning inspections and basic maintenance, which are to be observed in order to maintain the performance and reliability of a new aeroplane. It is reasonable to proceed according to a prescheduled scheme of lubrication and maintenance, appropriate to the operating conditions and climate.

8.2. Scheduled aeroplane inspections

The scope and the intervals of the inspection schedule are defined in the Aeroplane Maintenance Manual. A separate inspection system may be required for the aeroplane by the appropriate Civil Aviation Authority in order to renew the Certificate of Airworthiness. Tasks to be carried out in relation to scheduled inspections of engine, propeller and equipment, are defined in the respective applicable manuals or operating and maintenance instructions.

The owner and operator are responsible and must insure, that all servicing and maintenance is only carried out by qualified personnel.

8.3 Aeroplane repairs or modifications

Any repair or modification of the aeroplane design may only be performed by authorized personal.

NOTE

Prior to any modification of the aeroplane, ensure with the Civil Aviation Authority, that the intended modification will not negatively affect the airworthiness of the aeroplane

After completing the modification, according to the instructions given in the Aeroplane Maintenance Manual, the aircraft should be re-weighed, and the respective weighing report sheet completed and the Weight and Balance schedule in section 6-3 of this manual must be revised. Also Section 9 of this manual is to be supplemented accordingly.

8.4. Ground servicing

The dimensions of the standard aeroplane are given in the aeroplane drawings (see Section 1). This allows the size of the area required for the aeroplane in a hangar or for parking to be defined.

NOTE.

The size of the required area is to be increased respectively, to provide space for supplementary equipment such as antennas of radio equipment (or other equipment installed according to the operators options).

8.4.1. Relocating the aeroplane on ground

If using the towing bar on a level surface, one person is able to move the aeroplane. The towing bar is to be fixed to the nose wheel ferrules.

The tow bar can occurred in two versions (standard and collapsible). Collapsible tow bar for transport purpose can be fixed to the ferrules on the rear wall in the cockpit.

If the ground is not even and there are difficulties in moving the aeroplane, two people may manage the relocation, balancing the plane on the main wheels. One person should guide the wingtip and the other should control the movement with the towing bar.


NOTE.

Do not push or pull the aeroplane by holding propeller, control surfaces, wings or fairings.

Collapsible tow bar

9

Collapsible tow bar installed on rear wall in the cockpit

1. Taw bar

3. Ferrule of tow bar handle

2. Safety pin

4. Ferrules of tow bar forks

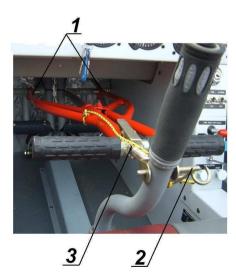
8.4.2. Parking

- 1. Position the aeroplane pointing into wind.
- 2. Apply chocks to the main wheels.
- 3. Secure the control sticks with the seat belts.
- 4. Lock the cockpit canopy and apply a canvas cover, if available.
- 5. Position the propeller horizontally.

For secure of flight controls can be used collapsible tow bar installed on the control stick and rudder pedals. Collapsible tow bar installed on the toe brakes over rudder pedals working as a parking brake and secure the controls.

For collapsible tow bar install:

- place forks of tow bar on the left seat rudder pedals or toe brakes,
- using safety pin fix the moving arm of tow bar to control stick,
- holding the handle of tow bar and control stick extend the tow bar.


In purpose to remove tow bar from controls unlock the catch pawl and remove safety pin.

Collapsible tow bar installed on the control stick and rudder pedals

- 1. Catch pawl
- 2. Safety pin
- 3. Tow bar

- 4. Control stick grip
- 5. Rudders pedals
- 6. Tow bar handle

Collapsible tow bar installed on toe brakes over rudder pedals

- 1. Tow bar forks
- 2. Safety pin
- 3. Catch pawl

8.4.3. Tying down

There are lugs for the tie-down ropes on the aeroplane. They are located under the wingtips, at the rear of the aeroplane (tail skid) and at the front (nose landing gear ferrules).

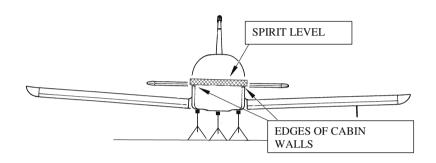
When tying down, the following should be observed:

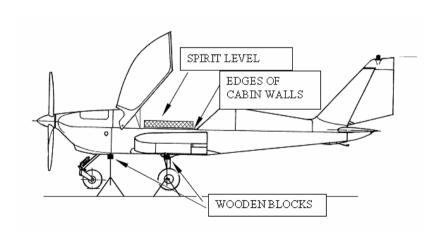
- 1. It is recommended to have the aeroplane pointing into wind.
- 2. Put chocks in front of the main wheels.
- 3. Apply locks to the ailerons, rudder and elevator, or fasten the control sticks with safety belts.
- 4. Put the ropes through the specified lugs and drive the mooring anchors in the ground. There should only be slight tension on the tiedowns to prevent sagging.
- 5. Apply the cover to the pitot and static pressure sensors.
- 6. Lock the canopy and put on the cover.
- 7. Position the propeller horizontally.

8.4.4. Lifting

When jacking the aeroplane the following procedure should be followed:

1. Put a stand (under a rib) under each wing to prevent the aeroplane from tilting.


NOTE.


Instead of using jacks, the aeroplane may also be lifted by hand, when holding the lower fuselage edges in the area between the firewall and the wing and in front of the horizontal stabilizer.

- 2. Locate one of the jacks under the nose landing gear ferrule and the other two, each side next to the cabin walls, under the main landing gear box. Apply wooden blocks
- 3. Lift the aeroplane gradually to the required height. Lift the aeroplane, raising each jack evenly at the same time and avoid swaying.

8.4.5. Levelling

After lifting, the aeroplane should be levelled, so that the cabin wall edges are horizontal (see the illustration).

8.5. Cleaning and basic maintenance

It is essential for the reliability of the aeroplane components to always keep them clean.

8.5.1. External painted surfaces

Prior to cleaning, take the following steps:

- Protect the wheels, especially the brake discs, covering them.
- Put the cover on the pitot and static pressure sensors.
- Mask off all holes and orifices.

Use clean water to remove all fine particles and then wash the surface with water adding mild soap. Do not use detergents or soaps which are acid, alkaline or abrasive.

To remove spots of grease or oil, use a piece of cloth with naphtha or aliphatic petrol.

After use of naphtha the surface should be re-waxed and polished.

To polish the painted surfaces, a soft cloth or chamois leather should be used. Aged painted surfaces may be treated with automotive waxes or good quality polishing compounds.

8.5.2. Glass panels

The greatest care should be taken to avoid scratches when cleaning glass panels of Plexiglas.

Never wipe the glass panels when dry. Rinse the panel with clean water or solution of mild soap and then wipe with soft clean cloth, sponge or chamois-leather.

To remove films of oil or grease, use tribasic sodium phosphate, well dissolved in water.

Sediments of grease or oil, if difficult to remove, should be cleaned with methanol, hexane, or naphtha. Finally rinse with clean water avoiding excessive rubbing of the glass panel surface.

CAUTION!

DO NOT USE PETROL, BENZENE, ACETONE, ANTI-ICING COMPOUNDS, OR PAINT SOLVENTS, BECAUSE THESE SUBSTANCES SOFTEN THE PLEXIGLASS, OR MAY GIVE RISE TO A NETWORK OF FINE CRACKS

8.5.3. Propeller

The propeller is to be cleaned in the same way as the painted surfaces, but with great care.

8.5.4. Engine

The engine is to be cleaned as indicated in the Engine Maintenance Manual.

8.5.5. Cabin interior

The seats, carpets and upholstery are to be cleaned with a vacuum cleaner.

Do not use water to clean items of cloth or fabric.

Foam-based shampoos for general use on automotive upholstery may be applied, but the indications given on the packing should be strictly observed.

SECTION 9 SUPPLEMENTS

Section 9

SUPPLEMENTS

	Page
9.1. Introduction	9-2
9.2. List of introduced supplements	9-2

9.1. Introduction

This section contains relevant supplements needed for safe operation of the aeroplane when equipped with supplementary systems, installed by the aeroplane manufacturer and specified below.

9.2. List of introduced supplements

		1
Document number	Title of the supplement introduced	Introduced. Date, Signature
Supplement No. 1 Pages 10	Radio-transceiver KY 97 A Intercom SPA 400TSO	
Supplement No. 2 Pages 4	Transponder KT 76 A	
Supplement No. 3 Pages 6	Clock M877	
Supplement No. 4	Reserved	
Supplement No. 5 Pages 4	Artificial horizon GH-12	
Supplement No. 6 Pages 4	Turn & bank indicator 1394T100-7Z; RCA83A-11-28V; UI-9012N4	
Supplement No. 7 Pages 4	Clock AczS-1	
Supplement No. 8	Reserved	

Document number	Title of the supplement introduced	Introduced. Date, Signature
Supplement No. 9	Artificial horizon R.C. Allen	
4 Pages	RCA-26AK-2	
Supplement No. 10	Directional gyro R.C. Allen	
4 Pages	RCA15AK-1	
Supplement No. 11 4 Pages	Mitchell Clock 99500-ELT D1-312-5038	
Supplement No. 12 8 Pages	Fuel flow meter TL-2524	
Supplement No. 13 12 Pages	GPS Bendix-King Skymap IIIC	
Supplement No.14	Reserved	
Supplement No. 15 4 Pages	Cabin air inlet	
Supplement No. 16 4 Pages	Cabin air outlet	
Supplement No. 17	Reserved	
Supplement No. 18 4 Pages	Stall warner ACI T1	
Supplement No. 19 4 Pages	Hour meter VDO MALAYSIA 331810012002	

AUGUST, 2008 Page 9-3

Document number	Title of the supplement introduced	Introduced. Date, Signature
Supplement No. 20	TRIM TAB	
6 Pages	AT3.33.070.0	
Supplement No. 21 12 Pages	ELPROP 3-1-1P Propeller	
Supplement No. 22 16 Pages	KX 125 Nav/Com System incorporating: Radio-VOR Receiver KX-125 ,VOR Indicator, Intercom.	
Supplement No. 23 4 Pages	Alternator	
Supplement No. 24 4 Pages	Landing and taxing lights	
Supplement No. 25 4 Pages	Strobe lights	
Supplement No. 26 10 Pages	Transponder TRT	
Supplement No. 27 4 Pages	Operation of oil cooler shutter	
Supplement No. 28 4 Pages	Position lights	
Supplement No. 29 8 Pages	Transponder TT31	
Supplement No. 30	ELT KANNAD	
8 Pages	406 AF-COMPACT	

Page 9-4 JULY, 2009

Document number	Title of the supplement introduced	Introduced. Date, Signature
Supplement No. 31 26 Pages	Fuel system with additional fuel tank	
Supplement No. 32 4 Pages	"Fuel pump ON" light	
Supplement No. 33 4 Pages	"Canopy open" light	
Supplement No. 34 18 Pages	GARMIN G500 System	
Supplement No. 35 Pages	Engine Monitoring System MVP-50P	
Supplement No. 36 8 Pages	Audio Panel GMA 340	
Supplement No. 37 10 Pages	GNS 430W	
Supplement No. 38 12 Pages	Transceiver SL 30	
Supplement No. 39 10 Pages	Transponder GTX328	
Supplement No. 40 12 Pages	FLARM ECW100	
Supplement No. 41 4 Pages	Heated Pitot	

(19)

SECTION 9 SUPPLEMENTS

Document number	Title of the supplement introduced	Introduced. Date, Signature
Supplement No. 42 4 Pages	Artificial Horizon 4200-10/11	
Supplement No. 43 8 Pages	VFR Night (glass cockpit)	
Supplement No. 44 8 Pages	VFR Night (analog instruments)	
Supplement No. 45 40 Pages	Pitot and static pressure system Variant II	
Supplement No. 46 12 Pages	GPS AERA 500	
Supplement No. 47 6 Pages	GARMIN GPSMAP 695	
Supplement No. 48 8 Pages	ASPEN EFD1000	
Supplement No. 49 6 Pages	DYNON EFIS-D6	
Supplement No. 50 8 Pages	ZAON PCAS MRX	
Supplement No. 51 4 Pages	Pitot and static pressure system Variant III	
Supplement No. 52 10 Pages	Transceiver SL 40	

Document number	Title of the supplement introduced	Introduced. Date, Signature
Supplement No. 53 6 Pages	Artificial Horizon RCA 2600	
Supplement No. 54 4 Pages	Flight Hour Meter WINTER QUARTZ 1510 FSZM	
Supplement No. 55 6 Pages	30° Flaps Setting	
Supplement No. 56 12 Pages	Transceiver GARMIN GTR 225A	
Supplement No. 57 12 Pages	Transceiver GARMIN GTN 650	
Supplement No. 58 4 Pages	Inertial seat belts	
Supplement No. 59 6 Pages	Control of the flap on the air inlet to the coolers	
Supplement No. 60 6 Pages	Control of the rudder AT3.28.000.0	
Supplement No. 61 18 Pages	Smoke installation	
Supplement No. 62 16 Pages	GARMIN GNC 255A Radio Transceiver	
Supplement No. 63 10 Pages	GPS GARMIN AERA 660	

18)

SECTION 9 SUPPLEMENTS

Document number	Title of the supplement introduced	Introduced. Date, Signature
Supplement No. 64 6 Pages	DAVTRON M800 Series Clocks	
Supplement No. 65 46 Pages	ROTAX 912iSc Sport engine	
Supplement No. 65A 44 Pages	ROTAX 912iSc Sport engine for MTOW 630 kg	
Supplement No. 66 8 Pages	75 liters fuel tank	
Supplement No. 67 6 Pages	Landing gear and brake system (by BERINGER)	
Supplement No. 68 4 Pages	Lights in the lower engine cover	
Supplement No. 69 4 Pages	Position and strobe lights WHELEN ORION 600	
Supplement No. 70 8 Pages	GARMIN G5 SYSTEM	
Supplement No. 71 8 Pages	GPS GARMIN AERA 795	
Supplement No. 72 14 Pages	TRIG TY91 Radio Transceiver	
Supplement No. 73 10 Pages	TRANSPONDER TRIG TT21 Mod. S	

Page 9-8

OCTOBER, 2018

Document number	Title of the supplement introduced	Introduced. Date, Signature
Supplement No. 74 8 Pages	FLARM LXNAV FlarmMouse	
Supplement No. 75 26 Pages	Wing fuel tanks	
Supplement No. 76 158 Pages	Maximum takeoff and landing weight 630 kg	
Supplement No. 77 10 Pages	GARMIN G500TXi system	

PAGE INTENTIONALLY LEFT BLANK

Page 9-10 MARCH, 2018